Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\left(x^2+2015\right).\left(x-2016\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2==-2015\\x=2016\end{cases}}\)( \(x^2=-2015\)loại do \(x^2\ge0\))
Vậy x= 2016
a, \(xy+3x-7y=21\)
\(\Leftrightarrow x.\left(y+3\right)-7y-21=0\)
\(\Leftrightarrow x.\left(y+3\right)-7.\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right).\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-7\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)
a, xy + 3x - 7y = 21
=> x(y + 3) - 7y - 21 = 21 - 21
=> x(y + 3) - (7y + 21) = 0
=> x(y + 3) - 7(y + 3) = 0
=> (x - 7)(y + 3) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Vậy x = {7;-3}
b, (x2 + 2015)(x - 2016) = 0
\(\Rightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=2015\left(loại\right)\\x=2016\end{cases}}}\)
Vậy x = 2016
(x-5)+(x-4)+(x-3)=5x
x-5+x-4+x-3=5x
3x-(5+4+3)=5x
3x-12=5x
3x-5x=12
-2x=12
x=12/(-2)
x=-6
Vậy x=-6
1/2=50%
x.(50%+50%)=2015/2016
x.100%=2015/2016
x=2015/2016:100%
x=2015/2016
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
x2015 = x2016
=> x2016 - x2015 =0
=> x2015.(x-1) = 0
=> x=0 hoặc x=1