K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
15 tháng 5 2020
Để tam thức đổi dấu 2 lần
\(\Leftrightarrow x^2-\left(m+2\right)x+8m+1=0\) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+2\right)^2-4\left(8m+1\right)>0\)
\(\Leftrightarrow m^2-28m>0\Rightarrow\left[{}\begin{matrix}m>28\\m< 0\end{matrix}\right.\)
Ta có: 2x + 4 < 0 khi x < - 2.
* Xét mx + 1 > 0 (*)
+ Nếu m = 0 thì (*) trở thành: 0x + 1 >0 (luôn đúng).
+ Nếu m > 0 thì * ⇔ m x > - 1 ⇔ x > - 1 m
Suy ra, tập nghiệm của hệ bất phương trình không thể - ∞ ; - 2
+ Nếu m < 0 thì * ⇔ m x > - 1 ⇔ x < - 1 m
Để hệ bất phương trình có tập nghiệm là - ∞ ; - 2 khi và chỉ khi :
- 1 m > - 2 ⇔ - 1 + 2 m m > 0 ⇔ - 1 + 2 m < 0 ( vì m < 0)
⇔ 2 m < 1 ⇔ m < 1 2
Kết hợp điều kiện m < 0 ta được: m < 0
Từ các trường hợp trên suy ra: m ≤ 0 .