Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.
Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.
Khi đó chứng minh được Cp song song với Ds.
Tương tự chứng minh được Ar song song với Dm.
Từ đó suy ra được: An // Cp và Dm // Bq.
b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.
Từ đó suy ra được: An vuông góc với Bq.
Hok tốt
Trong ∆ACD ta có:
CB là đường trung tuyến kẻ từ đỉnh C
Mặt khác:
E ∈ BC và BE = 1/2 BC (gt)
Nên: CE = 2/3 CB
Suy ra: E là trọng tâm của ∆ACD.
Vì AK đi qua E nên AK là đường trung tuyến của ∆ACD
Suy ra K là trung điểm của CD
Vậy KD = KC.
Không vẽ hình thì thôi :)
Xét tam giác ACD ta có:
CB là đường trung tuyến
Điểm E thuộc đoạn CB và \(CE=\frac{2}{3}CB\)
Suy ra E là trọng tâm của tam giác ACD
Nên AK là đường trung tuyến của tam giác ACD
Suy ra CK = KD
Vậy CK = KD ( đpcm )
Phải mò sách lớp 7 xem lại đấy :)