K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Lớp A:

Trung bình cộng lớp A: \(\overline {{X_A}}  = \frac{{148}}{{25}} = 5,92\)

Bảng tần số:

Điểm

2

3

4

5

6

7

8

9

Số HS

2

2

2

5

2

6

3

3

Do n=25 nên trung vị: số thứ 13

 

Do 2+2+2+5+2=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 6 (cao nhất)

Lớp B:

Trung bình cộng lớp B: \(\overline {{X_B}}  = \frac{{157}}{{25}} = 6,28\)

Bảng tần số:

Điểm

3

4

5

6

7

8

9

10

Số HS

2

2

4

5

7

2

2

1

Do n=25 nên trung vị: số thứ 13

Do 2+2+4+5=13

=> Trung vị là 6.

Mốt là 7 do 7 có tần số là 7 (cao nhất)

Trừ số trung bình ra thì trung vị và mốt của cả hai mẫu số liệu đều như nhau

=> Hai phương pháp học tập hiệu quả như nhau.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Sắp xếp lại:

5

31

37

43

43

57

62

63

78

80

91

Khoảng biến thiên R=91-5=86

Ta có: \({Q_2} = 57,{Q_1} = 37,{Q_3} = 78\)

Khoảng tứ phân vị:  \({\Delta _Q} = {Q_3} - {Q_1} = 78 - 37 = 41\)

Số trung bình \(\overline X \approx 53,64\)

Ta có bảng sau:

Độ lệch chuẩn là 79

Môn Tiếng Anh:

Sắp xếp lại:

37

41

49

55

57

62

64

65

65

70

73

Khoảng biến thiên R=73-37=36

Ta có: \({Q_2} = 62,{Q_1} = 49,{Q_3} = 65\)

Khoảng tứ phân vị:  \({\Delta _Q} = {Q_3} - {Q_1} = 65 - 49 = 16\)

Số trung bình \(\overline X = 58\)

Ta có bảng sau:

Độ lệch chuẩn là 36,6

Từ các số trên ta thấy mức độ học tập môn Tiếng Anh không đều bằng môn Toán.Độ lệch chuẩn là 36,6

17 tháng 5 2017

a) Tính chiều cao trung bình của học sinh nam

Cách 1 : Sử dụng bảng phân bố tần số ghép lớp :

\(\overline{x}=\dfrac{1}{60}\left(5.140+9.150+19.160+17.170+10.180\right)\)

\(\overline{x}=163\)

Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :

\(\overline{x}=\dfrac{1}{100}\left(8,33.140+15.150+31,67.160+28,33.170+16,67.180\right)\)\(\overline{x}=163\)

Tính chiều cao trung bình của học sinh nữ:

Cách 1 : Sử dụng bảng phân bố tần số ghép lớp \(\overline{x}=\dfrac{1}{60}\left(8.140+15.150+16.160+14.170+7.180\right)\)

\(\overline{x}=159,5\)

Cách 2 : Sử dụng bảng phân bố tần suất ghép lớp :

\(\overline{x}=\dfrac{1}{100}\left(13,33.140+25.150+26,67.160+23,33.170+11,67.180\right)\)

\(\overline{x}=159,5\)

b) Vì \(\overline{x}_{nam}=163>\overline{x}_{nữ}=159,5\) nên suy ra học sinh ở nhóm nam cao hơn học sinh ở nhóm nữ

c) \(\overline{x}=\left(60.159,5+60.163\right)\dfrac{1}{2}\approx161\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Số trung bình

\(\overline x \)

1,632184

Phương sai \(({S^2})\)

\({\sigma ^2}x\)

1,106091

Độ lệch chuẩn \((S)\)

\(\sigma x\)

1,051708

Phương sai hiệu chỉnh \(({\widehat s^2})\)

\({s^2}x\)

1,118952

Cỡ mẫu

\(n\)

87

Giá trị nhỏ nhất

\(\min \left( x \right)\)

0

Tứ phân vị thứ nhất

\({Q_1}\)

1

Trung vị \(({M_e})\)

\(Med\)

2

Tứ phân vị thứ ba

\({Q_3}\)

2

Giá trị lớn nhất

\(\max (x)\)

5

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Cả 2 mẫu đều có n=15.

Ta có cả 2 mẫu đều có giá trị nhỏ nhất là 3, giá trị lớn nhất là 9

Do đó cả 2 mẫu cùng khoảng biến thiên.

Cả 2 biểu đồ này có dạng đối xứng nên giá trị trung bình của hai mẫu A và B bằng nhau.

b) Từ biểu đồ ta thấy, mẫu A có các số liệu đồng đều và ổn định hơn mẫu B nên phương sai của mẫu A nhỏ hơn mẫu B.

31 tháng 3 2017

Cách 1:

+ Giá trị đại diện mỗi lớp: c 1 = 18 ;   c 2 = 22 ;   c 3 = 26 ;   c 4 = 30 ;   c 5 = 34  

+ Số trung bình cộng:

x = n 1 c 1 + n 2 c 2 + n 3 c 3 + n 4 c 4 + n 5 c 5 n 1 + n 2 + n 3 + n 4 + n 5 = 10 . 18 + 12 . 22 + 14 . 26 + 9 . 30 + 5 . 34 50 ≈ 25  

+ Độ lệch chuẩn:

s = s 2 = 10 18 - 25 2 + 12 22 - 25 2 + 14 26 - 25 2 + 9 30 - 25 2 + 5 34 - 25 2 50  

≈ 5 , 0  

Cách 2: Sử dụng máy tính Casio fx - 570 VNPLUS

+ Nhập  (vào chế thống kê).

 

+ Nhập  (hiển thị cột tần số).

 

+ Nhập  (nhập giá trị).

 

+ Nhập  (nhập tần số), sau đó ấn .

 

+ Nhập 

  ⇒ δ x = 4 , 983813801

(Lưu ý: Đối với Ví dụ 2, phương sai s 2 = 24 , 9 ).

Đáp án C.

2 tháng 6 2017

Các đỉnh của đường gấp khúc tần số có tọa độ là ( c i ;   n i ), với c i  là giá trị đại diện của lớp thứ i, n i   là tần số của lớp thứ i. Từ đó suy ra: các đỉnh của đường gấp khúc tần số là các trung điểm của các cạnh phía trên của các cột (các hình chữ nhật) của biểu đồ tần số hình cột

Đường gấp khúc  I 1   I 2   I 3 I 4   I 5   I 6  với  I 1 ,   I 2 ,   I 3 ,   I 4 ,   I 5 ,   I 6  lần lượt là trung điểm của các đoạn thẳng  A 1 B 1 ,   A 2 B 2 ,   A 3 B 3 A 4 B 4 ,   A 5 B 5 ,   A 6 B 6

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có n=2+4+6+12+8+3=35, lẻ.

Trung vị là học sinh thứ 18

Ta thấy 2+4+6<18<2+4+6+12

=> \({Q_2} = 3\)

Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\)(không bao gồm \({Q_2}\))

Nửa số liệu bên trái \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9:

Ta thấy 2+4<9<2+4+6

=>\({Q_1} = 2\)

Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\)(không bao gồm \({Q_2}\))

Nửa số liệu bên phải \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9 trong 17 học sinh và là học sinh thứ 9+18=27 trong 35 học sinh.

Ta thấy 2+4+6+12<27<2+4+6+12+8

=>\({Q_3} = 4\)

25 tháng 8 2019

Giải bài 2 trang 122 SGK Đại Số 10 | Giải toán lớp 10

Nhận xét: Số trung bình cộng điểm thi Toán của lớp 10A cao hơn lớp 10B nên có thể nói lớp 10A có kết quả thi môn Toán tốt hơn lớp 10B.

19 tháng 4 2019

Ta lập bảng phân bố tần số ghép lớp:


Số học sinh có số điểm trong nửa khoảng [50;80) là  6  + 11  + 6 = 23.