K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Ta có : 

\(\left(20^{2006}+11^{2006}\right)^{2007}=20^{2006.2007}+2.20^{2006}.11^{2006}+11^{2006.2007}\)

\(\left(20^{2007}+11^{2007}\right)^{2006}=20^{2007.2006}+2.20^{2007}.11^{2007}+11^{2007.2006}\)

Vì \(2.20^{2006}.11^{2006}< 2.20^{2007}.11^{2007}\) nên \(\left(20^{2006}+11^{2006}\right)^{2007}< \left(20^{2007}+11^{2007}\right)^{2006}\)

Chúc bạn học tốt ~ 

16 tháng 9 2019

giúp mình với khocroi

28 tháng 7 2015

Bài 1:

Ta có: -321<-320=-(32)10=-910

=>-321<-910(1)

-231<-230=-(23)10=-810

=>-231<-810(2)

mà 9>8 nên -910<-810 (3)

từ (1) ; (2) và (3) ta được:

-321<-231

Bài 2:

Ta có: 33334444=(3.1111)4444=34444.11114444=(34)1111.11114444=811111.11114444

44443333=(4.1111)3333=43333.11113333=(43)1111.11113333=641111.11113333

Vì 81>64 và 4444>3333 nên 811111.11114444>641111.11113333

hay 33334444>44443333

28 tháng 7 2015

Quá dễ mà !       

21 tháng 9 2021

\(3333^{4444}=\left(3333^4\right)^{1111}=\left(1111^4.3^4\right)^{1111}\)

\(4444^{3333}=\left(4444^3\right)^{1111}=\left(1111^3.4^3\right)^{1111}\)

Do \(1111^4.3^4>1111^3.4^3\)

\(\Rightarrow\left(1111^4.3^4\right)^{1111}>\left(1111^3.4^3\right)^{1111}\)

\(\Rightarrow3333^{4444}>4444^{3333}\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^