Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Tập {1;2;3;4;5;6} có 6 số và tạo thành có 5 vị trí. Mỗi số có 5 chữ số tạo thành một chỉnh hợp chập 5 của 6 chữ số trên
Trong 720 số đó mỗi vị trí (hàng chục nghìn, nghìn, trăm, chục, đơn vị) mỗi chữ số 1, 2, 3, 4, 5, 6 có mặt 720 6 = 120 lần. Tổng các chữ số 1+2+3+4+5+6=21.
Vậy tổng của 720 số tạo thành là 120.21.11111=27999720
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)
Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang
Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang
Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)
- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
- Với \(m\ge0\)
\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)
+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng
Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử
Một số tự nhiên ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ có 5 chữ số chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3.
Nhận thấy một số tự nhiên thoả yêu cầu sẽ không đồng thời có mặt các chữ số 0 và 3.
Do đó ta chia làm 2 trường hợp:
TH1: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 0.
Khi đó 5 chữ số còn lại có tổng của chúng chia hết cho 3, nên số số tự nhiên thoả mãn là 5! số.
TH2: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 3 (khi đó ta còn 5 chữ số là 0; 1; 2; 4; 5 có tổng của chúng chia hết cho 3).
Suy ra trường hợp này ta có 4.4!4.4! số.
Vậy theo quy tắc cộng ta có tất cả 5!+4.4!=2165!+4.4!=216 số .
Đáp án:
X=0,3,6,9
Lời giải: vì tổng các chữ số phải chia hết cho 3
0369