\(\dfrac{ }{aaa}\) và \(\dfrac{ }{aaaaaa}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ta có: \(\overline{aaa}\) = 111.a (a < 10)

mà 111 ⋮ 37 nên 111.a ⋮ 37

Vậy \(\overline{aaa}\) ⋮ 37

Ta có: \(\overline{aaaaaa}\) = 111111.a (a < 10)

mà 111111 ⋮ 37 nên 111111.a ⋮ 37

Vậy \(\overline{aaaaaa}\) ⋮ 37

20 tháng 5 2017

Ta có: \(\dfrac{ }{aaa}=100a+10a+a=111a=37.3.a,⋮37\)

\(\dfrac{ }{aaaaaa}=\dfrac{ }{aaa}.1000+\dfrac{ }{aaa},\) cả hai số hạng của tổng đều \(⋮37\) nên tổng của chúng cũng \(⋮37\)

Ví dụ: Số \(555⋮37\) ( thương là 15 )

Số \(777777⋮37\) ( thương là 21021 )

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

11 tháng 9 2018

dễ mà bạn

1 tháng 10 2017

\(LINH_1=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+....+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+....+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=LINH_2\left(đpcm\right)\)

8 tháng 6 2017

Áp dụng 1.5 ta có:
a) \(\dfrac{4}{9}< 1\Rightarrow\dfrac{4}{9}< \dfrac{4+9}{9+9}=\dfrac{13}{18}\).
b) \(\dfrac{-15}{7}< 1\Rightarrow\dfrac{-15}{7}< \dfrac{-15+3}{7+3}=\dfrac{-12}{10}=\dfrac{-6}{5}\).
c) \(\dfrac{278}{37}>1\Rightarrow\dfrac{278}{37}>\dfrac{278+9}{37+9}=\dfrac{278}{46}\).
d) \(\dfrac{-157}{623}< 1\Rightarrow\dfrac{-157}{623}< \dfrac{-157+16}{623+16}=\dfrac{-141}{639}=\dfrac{-47}{213}\);

25 tháng 6 2017

a) \(\dfrac{4}{9}\)và \(\dfrac{13}{18}\)

Ta có : \(\dfrac{4}{9}\)=\(\dfrac{4.2}{9.2}\)=\(\dfrac{8}{18}\)

\(\Rightarrow\)\(\dfrac{8}{18}\)>\(\dfrac{13}{18}\)

giữ nguyên \(\dfrac{13}{18}\) (vì \(8>13\))

- Vậy \(\dfrac{4}{9}>\dfrac{13}{18}\)

b)\(-\dfrac{15}{7}\)và \(-\dfrac{6}{5}\)

Ta có :\(-\dfrac{15}{7}=\dfrac{-15.5}{7.5}=\dfrac{-75}{35}\)

\(\Rightarrow\)\(-\dfrac{75}{35}< \dfrac{-42}{35}\)

\(-\dfrac{6}{5}=\dfrac{-6.7}{5.7}=\dfrac{-42}{35}\) (vì - 75>-42)

- vậy \(\dfrac{-15}{7}< \dfrac{-6}{5}\)

c)\(\dfrac{278}{37}\)và \(\dfrac{287}{46}\)

Ta có :\(\dfrac{278}{37}=\dfrac{278.46}{37.46}=\dfrac{12788}{1702}\)

\(\Rightarrow\)\(\dfrac{12788}{1702}>\dfrac{10286}{1702}\)

\(\dfrac{287}{46}=\dfrac{287.37}{46.37}=\dfrac{10286}{1702}\) (vì 12788>10286)

- vậy \(\dfrac{278}{37}>\dfrac{10286}{46}\)

d)\(-\dfrac{157}{623}\)và \(-\dfrac{47}{213}\)

\(-\dfrac{157}{623}=\dfrac{-157.213}{623.213}=\dfrac{-33441}{132699}\)

\(\Rightarrow\dfrac{-33441}{132699}< \dfrac{-29281}{132699}\)

\(\dfrac{-47}{213}=\dfrac{-47.623}{213.623}=\dfrac{-29281}{132699}\) (vì -33441<-29281)

-vậy \(-\dfrac{157}{623}< -\dfrac{47}{213}\)

1 tháng 8 2017

Ta có:

\(\overline{abcabc}=1001\overline{abc}\)

\(=143.7.\overline{abc}\)

\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)

\(\rightarrowđpcm\)

\(\overline{aaa}=111a\)

\(=37.3.a\)

\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)

\(\rightarrowđpcm\)

\(\overline{1ab1}-\overline{1ba1}\)

\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)

\(=\overline{ab}-\overline{ba}\)

\(=10a+b-10b-a\)

\(=9a-9b\)

\(=9\left(a-b\right)⋮9\)

\(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)

\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)

\(\rightarrowđpcm\)

1 tháng 8 2017

bn ơi câu b mk ghi nhầm đề là 4 chữ a mới đúng bn giải lại giùm mk nhoa

18 tháng 4 2017

a) 45<1<1,1⇒45<1,145<1<1,1⇒45<1,1

b) -500 < 0 < 0,001 => -500 < 0,001

c) −12−37=1237<1236=13=1339<1338⇒−12−37<1338


5 tháng 9 2017

a)Ta có :

\(\dfrac{4}{5}< 1< 1,1\Rightarrow\dfrac{4}{5}< 1,1\)

b)Ta có :

\(-500< 0< 0,001\Rightarrow-500< 0,001\)

c)Ta có :

\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\Rightarrow\dfrac{-12}{-37}< \dfrac{13}{38}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

4 tháng 11 2017

Giải:

\(\dfrac{bz-xy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-cbx}{c^2}\)

\(\Rightarrow\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}\)

\(=0\)

Ta có: \(\dfrac{bz-cy}{a}\)

\(\Rightarrow bz-cy=0\)

\(\Rightarrow\dfrac{z}{c}=\dfrac{b}{y}\)\(\left(1\right)\)

Ta có:\(\dfrac{cx-az}{b}=0\)

\(\Rightarrow cx-az=0\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)(đpcm)

23 tháng 7 2017

Mình đã làm ở đây: Câu hỏi của Huyền Trang Tiến Tài

23 tháng 12 2017

Ta có :

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)