K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2n + 5 và 3n+ 7

=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d

=> 2n+5 chia hết cho d

=> 3n+7 chai hết cho d

=> 3( 2n+5) chia hết cho d

=> 2( 3n+7) chia hết cho d

=> 6n + 15 chia hết cho d

=> 6n+ 14 chia hết cho d

=> 6n+ 15- 6n + 14 chia hết cho d

=> 1 chia hết cho d

=> d= 1

=> UCLN ( 2n+5) và 3n+7 là 1

=> đpcm

Tick nhé 

20 tháng 1 2016

Gọi UCLN(2n + 5; 3n + 7) là d

=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d

     3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d

=> 3(2n + 5) - 2(3n + 7) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>UCLN(2n + 5; 3n + 7) = 1

Vậy...

19 tháng 1 2016

Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau

19 tháng 1 2016

Vì 2 số tự nhiên liên tiếp ko chia hết cho nhau

10 tháng 12 2016

Gọi d là ƯC của 7n + 10 và 5n + 7 

Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d

<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d 

<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d 

=> (35n + 50) - (35n + 49) chia hết cho d 

                          => 1 chia hết cho d 

                           => d = 1 

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau 

31 tháng 12 2018

Gọi d là ƯC của 7n + 10 và 5n + 7 

Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d

<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d 

<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d 

=> (35n + 50) - (35n + 49) chia hết cho d 

                          => 1 chia hết cho d 

                           => d = 1 

Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau 

15 tháng 11 2018

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

15 tháng 11 2018

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau

11 tháng 11 2015

1)

Gọi d là ƯC(n+2;3n+5) (d thuộc N*)

=>n+2 chia hết cho d =>3n+6 chia hết cho d

=>3n+5 chia hết cho d

=>3n+6-3n-5 chia hết cho  d

=>1 chia hết cho d

=>d=1 =>(n+2;3n+5)=1

=>ĐPCM

3 tháng 12 2019

Gọi  \(d=ƯCLN\left(n+2;3n+5\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}\)

\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó: ƯCLN(n + 2; 3n + 5) = 1

Vậy hai số n + 2 và 3n + 5 là hai số nguyên tố cùng nhau.

Học tốt nhé ^3^

3 tháng 12 2019

Gọi ƯCLN(n + 2, 3n + 5) là d (d thuộc N*)

Ta có  n + 2 chia hết cho d

           3n + 5 chia hết cho d

=>       3(n + 2) chia hết cho d

           3n + 5 chia hết cho d

=>       3n + 6 chia hết cho d

           3n + 5 chia hết cho d

=> (3n + 6) - (3n + 5) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

Ư(1) = {1}

=> d = 1 

=>  ƯCLN (n+2, 3n + 5) = 1

 Vậy n + 2 và 3n + 5 là hai số nguyên tố cùng nhau

(Mik nghĩ vậy tại mik ko nhớ cho lắm)

Hok tốt

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

11 tháng 12 2017

gọi UCLN(n+3; 2n + 5) = d

=> n+3 chia hết cho d và 2n + 5 chia hết cho d

=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d

=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau


 

gọi UCLN(n+3;2n+5) là d

theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d

                            2n+5 chia hết cho d

-> (2n+6)-(2n+5) chia hết cho d

-> 2n+6-2n-5 chia hết cho d

-> 1 chia hết cho d

Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau

CHÚC BẠN HỌC TỐT !     :)

4 tháng 12 2018

Gọi ƯCLN ( 2n+1, 6n+4) là d ( d thuộc N)

Ta có:

2n + 1 chia hết chia cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d     (1)

6n+4 chia hết cho d                                                                                               (2)

Từ (1), (2) suy ra:

(6n+4) - (6n+3) chia hết cho d

                      1 chia hết cho d

=>                   d=1

=>                    ƯCLN(2n+1,6n+4) = 1

Vậy 2n+1 và 6n+4 là hai số nguyên tố cùng nhau

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please