Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(10^{-3}=\dfrac{1}{10^3}.\)
Vậy đáp án đúng là (C). \(\dfrac{1}{10^3}\)
b) \(10^3.10^{-7}=10^{-4}\)
Vậy đáp án đúng là (C). \(10^{-4}\)
c)\(\dfrac{2^3}{2^5}=2^{-2}\)
Vậy đáp án đúng là (A). \(2^{-2}\)
\(\sqrt{x}=2\)
mà \(x^2=\left(\sqrt{x}\right)^4\)
\(\Rightarrow\left(\sqrt{x}\right)^4=2^4\)
\(\Rightarrow\left(\sqrt{x}\right)^4=16\)hay \(x^2=16\)
vậy chọn ý D
a) \(\left|\frac{1}{3}x-8\right|+3=15\)
\(\Leftrightarrow\left|\frac{1}{3}x-8\right|=12\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x-8=-12\\\frac{1}{3}x-8=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x=-4\\\frac{1}{3}x=20\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=60\end{cases}}\)
Vậy \(x\in\left\{-12;60\right\}\)
b) \(15-\left|2+3x\right|=8\)
\(\Leftrightarrow\left|2+3x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=-7\\2+3x=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-9\\3x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{3}\end{cases}}\)
Vậy \(x\in\left\{-3;\frac{5}{3}\right\}\)
d) \(-1\frac{1}{6}-\left|5-3x\right|=\frac{2}{3}\)
\(\Leftrightarrow\frac{-7}{6}-\left|5-3x\right|=\frac{2}{3}\)
\(\Leftrightarrow\left|5-3x\right|=\frac{-7}{6}-\frac{2}{3}\)
\(\Leftrightarrow\left|5-3x\right|=\frac{-11}{6}\)
Vì \(\left|5-3x\right|\ge0\forall x\)
mà \(\frac{-11}{6}< 0\)\(\Rightarrow\)Vô lý
Vậy \(x\in\varnothing\)
e) \(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{20}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{2.6}\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^8\)
g) \(4.2^5:\left(2^3.1^{16}\right)=2^2.2^5:2^3=2^4=16\)
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
a) Đặt A(x) = 0
Ta có:
3(x + 2) - 2x(x + 2) = 0
=> (x + 2)(3 - 2x) = 0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)
b) Đặt B(x) = 0
Ta có:
2x + 8 - 23 = 0
=> 2x + 8 = 23
=> 2x = 15
\(\Rightarrow x=\dfrac{15}{2}\)
Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)
c) Đặt C(x) = 0
Ta có:
-x5 + 5 = 0
=> -x5 = -5
=> x5 = 5
\(\Rightarrow x=\sqrt[5]{5}\)
Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)
d) Đặt D(x) = 0
Ta có:
2x3 - 18x = 0
=> x(2x2 - 18) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)
Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)
e) Đặt E(x) = 0
Ta có:
\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)
\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)
g) Đặt G(x) = 0
Ta có:
\(\dfrac{4}{25}-x^2=0\)
\(\Rightarrow x^2=\dfrac{4}{25}\)
\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)
Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)
h) Đặt H(x) = 0
Ta có:
x2 - 2x + 1 = 0
=> x2 - 2x = -1
=> x(x - 2) = -1
=> Ta có trường hợp:
+/ x = -1
Và x - 2 = 1 => x = 3
Mà \(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1
+/ x = 1
Và x - 2 = -1 => x = 1
Vậy nghiệm của đa thức H(x) là x = 1
k) Đặt K(x) = 0
Ta có:
5x . (-2x2) . 4x . (-6x) = 0
=> 240x5 = 0
=> x5 = 0
=> x = 0
Vậy nghiệm của đa thức K(x) là x = 0
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
23/25 = 2-2. Vậy chọn đáp án A