K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a = 2 = \(\sqrt{4}\) b = -5 = \(\sqrt{25}\) c = 1 = \(\sqrt{1}\) d = 25 = \(\sqrt{625}\)

e = 0 = \(\sqrt{0}\) g = \(\sqrt{7}=\sqrt{7}\) h =\(\dfrac{3}{4}=\) \(\sqrt{\dfrac{9}{16}}\) i = \(\sqrt{4}-3\) = \(\sqrt{1}\)

k = \(\dfrac{1}{4}-\dfrac{1}{2}\) =\(\sqrt{\dfrac{1}{16}}\)

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

27 tháng 11 2022

a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)

\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)

\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)

\(=\dfrac{124}{15}\)

b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)

\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)

\(=-\dfrac{71}{375}\)

c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)

\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)

=1+2/5

=7/5

d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)

e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)

Toàn câu dễ nên bạn tự làm đi.

Trong lúc bạn đánh xong bài này thì bạn có thể làm xong rồi đó.

Đừng có ỷ lại vào người khác ,động não lên.

5 tháng 11 2018

Câu 1: Thực hiện phép tính :

a) \(2.\left(\dfrac{-2}{3}\right)^2-\dfrac{7}{2}=2.\dfrac{4}{9}-\dfrac{7}{2}\)

\(=\dfrac{8}{9}-\dfrac{7}{2}\)

\(=\dfrac{16}{18}-\dfrac{63}{18}=\dfrac{-47}{18}\)

\(b,5\dfrac{4}{13}.\dfrac{-3}{4}+3\dfrac{9}{13}.\left(-0,75\right)=\dfrac{69}{13}.\dfrac{-3}{4}+\dfrac{48}{13}.\dfrac{-3}{4}\)

\(=\left(\dfrac{69}{13}+\dfrac{48}{13}\right).\dfrac{-3}{4}\)

\(=\dfrac{117}{13}.\dfrac{-3}{4}\)

\(=9.\dfrac{-3}{4}=\dfrac{-27}{4}\)

\(c,\left(-1\right)^{2017}+\left|\dfrac{-1}{13}\right|+\sqrt{\dfrac{144}{169}}=-1+\dfrac{1}{13}+\dfrac{12}{13}\)

\(=-1+\dfrac{13}{13}\)

\(=-1+1=0\)

5 tháng 11 2018

Câu 3: Tìm x, biết:

a)\(\dfrac{3}{5}-x=25\)

\(x=\dfrac{3}{5}-\dfrac{125}{5}\)

\(x=\dfrac{-122}{5}\)

b)\(\dfrac{2}{3}\left|x-1\right|+\dfrac{1}{4}=\dfrac{5}{3}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{20}{12}-\dfrac{3}{12}\)

\(\dfrac{2}{3}\left|x-1\right|=\dfrac{17}{12}\)

\(\left|x-1\right|=\dfrac{17}{12}:\dfrac{2}{3}\)

\(\left|x-1\right|=\dfrac{17}{12}.\dfrac{3}{2}\)

\(\left|x-1\right|=\dfrac{17}{8}\)

Ta có 2 TH: TH1:\(x-1=\dfrac{17}{8}\) TH2:\(x-1=\dfrac{-17}{8}\) \(x=\dfrac{17}{8}+1\) \(x=\dfrac{-17}{8}+1\) \(x=\dfrac{17}{8}+\dfrac{8}{8}=\dfrac{25}{8}\) \(x=\dfrac{-17}{8}+\dfrac{8}{8}=\dfrac{-9}{8}\) Vậy x∈\(\left\{\dfrac{25}{5};\dfrac{-9}{8}\right\}\)
30 tháng 6 2017

1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)

\(\dfrac{2010}{a}=1\Rightarrow a=2010\);

\(\dfrac{c}{2010}=1\Rightarrow c=2010\);

\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).

Vậy (a, b, c) = (2010; 2010; 2010)

3)

a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)

Có: \(\sqrt{x+24}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)

\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)

Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)

b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)

Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)

\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)

\(\Rightarrow2x+\dfrac{4}{13}=0\)

\(\Rightarrow2x=-\dfrac{4}{13}\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)

4)

a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)

Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)

\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)

\(\Rightarrow x+\dfrac{5}{41}=0\)

\(\Rightarrow x=-\dfrac{5}{41}\)

Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)

b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)

Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)

\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)

\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\)

\(\Rightarrow x=\dfrac{2}{3}\)

Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)

1 tháng 7 2017

làm giup minh bai 2 luon nha

khocroi

27 tháng 7 2018

B1

a. = 7/3. ( 37/5 - 32/5)

= 7/3 . 1

= 7/3

humPhần b có gì đó sai sao lại có 3:+

c. = 4 + 6 - 3 + 5

= 12

d. = -5/21 : -19/21 : 4/5

= 25/76

B2

a. 1/4 : x =1/2 - 3/4

x = -1/4

x = 1/4 : -1/4

x = -1

b. 2 . | 2x - 3 | = 4 - (-8)

2 . | 2x - 3| = 12

| 2x - 3 | = 12:2

| 2x - 3 | = 6

| x - 3 | = 6:2

| x - 3 | = 3

=> x - 3 = +- 3

* x - 3 = 3

x = 6

* x - 3 = -3

x = 0

Chúc bạn vui vẻ yeu

28 tháng 7 2018

b. = 3 : 9/4 + 1/9 .6

= 4/3 + 2/3

= 2

Bài 1: Thực hiện các phép tính: a) 9,6 . \(2\dfrac{1}{2}\) - (2 . 125 - \(1\dfrac{5}{12}\)) : \(\dfrac{1}{4}\). b) \(\dfrac{5}{18}\) - 1,456 : \(\dfrac{7}{25}\) + 4,5 . \(\dfrac{4}{5}\) ; c) (\(\dfrac{1}{2}\) + 0,8 - \(1\dfrac{1}{3}\)) . (2,3 + \(4\dfrac{7}{25}\) - 1,28) ; d) (-5) . 12 : [(-\(\dfrac{1}{4}\)) + \(\dfrac{1}{2}\) : (-2)] + \(1\dfrac{1}{3}\) ; Bài 2: Với giá trị nào của x thì ta có: a) |x| + x = 0; b) x + |x| =...
Đọc tiếp

Bài 1: Thực hiện các phép tính:

a) 9,6 . \(2\dfrac{1}{2}\) - (2 . 125 - \(1\dfrac{5}{12}\)) : \(\dfrac{1}{4}\).

b) \(\dfrac{5}{18}\) - 1,456 : \(\dfrac{7}{25}\) + 4,5 . \(\dfrac{4}{5}\) ;

c) (\(\dfrac{1}{2}\) + 0,8 - \(1\dfrac{1}{3}\)) . (2,3 + \(4\dfrac{7}{25}\) - 1,28) ;

d) (-5) . 12 : [(-\(\dfrac{1}{4}\)) + \(\dfrac{1}{2}\) : (-2)] + \(1\dfrac{1}{3}\) ;

Bài 2: Với giá trị nào của x thì ta có:

a) |x| + x = 0; b) x + |x| = 2x.

Bài 3: Từ tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) (a ≠ ± d) hãy rút ra tỉ lệ thức : \(\dfrac{a+c}{a-c}\) = \(\dfrac{b+d}{b-d}\).

Bài 4: Ba đơn vị kinh doanh đầu tư vốn tỉ lệ với 2:5 và 7. Hỏi mỗi đơn vị được chia bao nhiêu lãi nếu số tiền lãi là 560 triệu đồng và tiền lãi được chia tỉ lệ thuận với vốn đầu tư?

Bài 5: Cho hàm số : y = -2x + \(\dfrac{1}{3}\). Các điểm sau đây có thuộc đồ thị hàm số không?

A (0 ; \(\dfrac{1}{3}\)) ; B (\(\dfrac{1}{2}\) ; -2) ; C (\(\dfrac{1}{6}\) ; 0) .

Bài 6: Biết rằng đồ thị của hàm số y = ax đi qua điểm M(-2 ; -3), Hãy tìm a.

2
19 tháng 5 2017

nhìu thếoho

19 tháng 5 2017

Câu 1: tự lm, dễ tek k lm đc thì mất gốc lun đó

Câu 2: link: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Câu 3: Câu hỏi của phuc le - Toán lớp 7 | Học trực tuyến

Câu 4: Goij 3 đơn vị đó lần lượt là a, b, c (a, b, c \(\in N\)*)

Theo đề ta có: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)\(a+b+c=560\)

Áp dung t/c của dãy tỉ số = nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{2+5+7}=\dfrac{560}{14}=40\)

\(\Rightarrow\left[{}\begin{matrix}a=40\cdot2=80\\b=40\cdot5=200\\c=40\cdot7=280\end{matrix}\right.\)

Vậy 3 đơn vị được chia lại lần lượt là: 80 triệu ; 200 triệu ; 280 triệu

Câu 5: + 6: cứ thay x, y vào mà lm, phần đồ thị hs dễ bn ạ!

11 tháng 11 2018

a, \(\dfrac{13}{32}+\dfrac{8}{24}+\dfrac{19}{32}+\dfrac{2}{3}\)

\(=\left(\dfrac{13}{32}+\dfrac{19}{32}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)

\(=\dfrac{32}{32}+\dfrac{3}{3}=1+1=2\)

b, \(\dfrac{3}{4}.36\dfrac{1}{5}-\dfrac{3}{4}.2\dfrac{1}{5}\)

\(=\dfrac{3}{4}.\left(36\dfrac{1}{5}-2\dfrac{1}{5}\right)\)

\(=\dfrac{3}{4}.\left[\left(36-2\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\right]\)

\(=\dfrac{3}{4}.34=\dfrac{102}{4}=26\)

19 tháng 11 2022

Bài 2:

a: x=27/10:9/5=27/10*5/9=135/90=3/2

b: =>|x|=1,75

=>x=1,75 hoặc x=-1,75

c: =>\(2-x=\sqrt[3]{25}\)

hay \(x=2-\sqrt[3]{25}\)

d: =>3^x-1*6=162

=>3^x-1=27

=>x-1=3

=>x=4