Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
Hơi phân vân 1 xíu về đề bài, đề hỏi thế này nghĩa là hàm cần đạt cả 2 điều: 1. Tồn tại GTNN trên toàn miền R (global minimum) 2. \(\min\limits_Rf\left(x\right)\ge-3\) đúng ko?
Hàm số đã cho xác định trên R nên liên tục trên R
\(\lim\limits_{x\rightarrow+\infty}\frac{2x+m}{\sqrt{2x^2+3}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{2x+m}{\sqrt{2x^2+3}}=\frac{2}{-\sqrt{2}}=-\sqrt{2}\)
\(f'\left(x\right)=\frac{2\sqrt{2x^2+3}-\frac{2x\left(2x+m\right)}{\sqrt{2x^2+3}}}{2x^2+3}=\frac{6-2mx}{\left(2x^2+3\right)\sqrt{2x^2+3}}\)
\(\Rightarrow f'\left(x\right)=0\) có tối đa 1 nghiệm nên \(f\left(x\right)\) có tối đa 1 cực trị
- Với \(m>0\Rightarrow f\left(x\right)\) chỉ có cực đại, ko có cực tiểu nên không tồn tại GTNN
- Với \(m=0\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\) hàm ko tồn tại GTNN
- Với \(m< 0\Rightarrow f\left(x\right)\) đạt cực tiểu tại \(x=\frac{3}{m}\) \(\Rightarrow f\left(x\right)\) đồng thời đạt min trên R tại \(x=\frac{3}{m}\)
\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{3}{m}\right)=-\frac{m^2+6}{\sqrt{3m^2+18}}\ge-3\)
\(\Leftrightarrow m^2+6\le3\sqrt{3m^2+18}\)
\(\Leftrightarrow m^4-15m^2-126\le0\)
\(\Leftrightarrow m^2\le21\Rightarrow-\sqrt{21}< m< 0\)
Kết hợp các trường hợp và lấy m nguyên ta được \(-4\le m< 0\)
Có 4 giá trị nguyên của m thỏa mãn (nếu chỉ cần tìm m sao cho \(f\left(x\right)\ge-3;\forall x\in R\) thì có 15 giá trị nguyên)
Câu 1: Xét trên miền [1;4]
Do \(f\left(x\right)\) đồng biến \(\Rightarrow f'\left(x\right)\ge0\)
\(x\left(1+2f\left(x\right)\right)=\left[f'\left(x\right)\right]^2\Leftrightarrow x=\frac{\left[f'\left(x\right)\right]^2}{1+2f\left(x\right)}\Leftrightarrow\frac{f'\left(x\right)}{\sqrt{1+2f\left(x\right)}}=\sqrt{x}\)
Lấy nguyên hàm 2 vế:
\(\int\frac{f'\left(x\right)dx}{\sqrt{1+2f\left(x\right)}}=\int\sqrt{x}dx\Leftrightarrow\int\left(1+2f\left(x\right)\right)^{-\frac{1}{2}}d\left(f\left(x\right)\right)=\int x^{\frac{1}{2}}dx\)
\(\Leftrightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+C\)
Do \(f\left(1\right)=\frac{3}{2}\Rightarrow\sqrt{1+2.\frac{3}{2}}=\frac{2}{3}.1\sqrt{1}+C\Rightarrow C=\frac{4}{3}\)
\(\Rightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+\frac{4}{3}\)
Đến đây có thể bình phương chuyển vế tìm hàm \(f\left(x\right)\) chính xác, nhưng dài, thay luôn \(x=4\) vào ta được:
\(\sqrt{1+2f\left(4\right)}=\frac{2}{3}4.\sqrt{4}+\frac{4}{3}=\frac{20}{3}\Rightarrow f\left(4\right)=\frac{\left(\frac{20}{3}\right)^2-1}{2}=\frac{391}{18}\)
Câu 2:
Diện tích hình phẳng cần tìm là hai miền đối xứng qua Oy nên ta chỉ cần tính trên miền \(x\ge0\)
Hoành độ giao điểm: \(sinx=x-\pi\Rightarrow x=\pi\)
\(S=2\int\limits^{\pi}_0\left(sinx-x+\pi\right)dx=4+\pi^2\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)
\(\Rightarrow2a+b^3=9\)
9.
\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)
\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)
10.
\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)
\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)
\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)
4.
\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)
5.
\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)
6.
\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)
7.
\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)
8.
\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)
\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)
\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)
- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị
- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\)
hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép
\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)
Chọn \(f\left(x\right)=x^3+ax^2+bx+c\)
\(2f\left(x^2\right)+f'\left(x\right)=2x^6+7x^2+2\)
\(\Leftrightarrow2x^6+2ax^4+2bx^2+c+3x^2+2ax+b=2x^6+7x^2+2\)
\(\Leftrightarrow2ax^4+\left(2b+3\right)x^2+2ax+b+c=7x^2+2\)
Đồng nhất 2 vế ta được: \(\left\{{}\begin{matrix}a=0\\2b+3=7\\b+c=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c=0\\b=2\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=x^3+2x\Rightarrow f\left(1\right)=3\)
ý D có thể xảy ra vì gt chỉ cho h/s đồng biến trên (0;+\(\infty\))
b.7/3
BBBBBB.7/3