Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi một giờ vòi một chảy đc a phần bể
Vòi 2 chảy được b phần bể
Ta có
\(\left\{{}\begin{matrix}3a+3b=1\\2a+4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+6b=2\\6a+12b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6b=1\\3a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{3}\\a=\dfrac{1}{3}\end{matrix}\right.\)
Vậy vòi 1 và vòi 2 đều chảy một mình 6h thì đẩy bể
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)(Điều kiện: x>4)
Gọi thời gian vòi thứ hai chảy một mình đẩy bể là y(giờ)(Điều kiện: y>4)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, 2 vòi chảy được: \(\dfrac{1}{4}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)
Theo đề, ta có phương trình: \(\dfrac{9}{x}+\dfrac{1}{y}=1\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{9}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-8}{x}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{3}{32}=\dfrac{5}{32}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\y=\dfrac{32}{5}\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần \(\dfrac{32}{3}h\) để chảy một mình đầy bể
Vòi 2 cần \(\dfrac{32}{5}h\) để chảy một mình đầy bể
Gọi thời gian mà vòi thứ nhất và vòi thứu hai chảy một mình đẩy bể lần lượt là x, y (giờ)
Vì hai vòi cùng chảy vào một cái bể không có nước thì trong 12 giờ thì sữ đầy bể nên:
12x+12y=112x+12y=1
Mặt khác, Nếu chỉ mở vòi thứ nhất trong 4h rồi mở vòi thứ 2 chảy trong 6h thì chỉ được hai phần năm bể nên ta có:
4x+6y=254x+6y=25
Suy ra, ta có hệ phương trình:
{12x+12y=14x+6y=25⇔{x=20x=30{12x+12y=14x+6y=25⇔{x=20x=30
Vậy, thời gian mà vòi thứ nhất và vòi thứ hai chảy một mình đẩy bể lần lượt là 20 giờ, 30 giờ
Lời giải:
Giả sử vòi 1 và vòi 2 chảy 1 mình thì trong $a$ và $b$ giờ sẽ đầy bể (lần lượt)
Khi đó, trong 1 giờ thì vòi 1 chảy được $\frac{1}{a}$ bể, vòi 2 chảy $\frac{1}{b}$ bể.
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{16}{a}+\frac{16}{b}=1\\ \frac{3}{a}+\frac{6}{b}=\frac{1}{4}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{24}\\ \frac{1}{b}=\frac{1}{48}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=24\\ b=48\end{matrix}\right.\)
Vậy vòi 1 chảy 1 mình trong 24 giờ sẽ đầy bể.
Đổi 3h45p=\(\dfrac{15}{4}\)h
Gọi thời gian vòi thứ nhất 1 mình chảy đầy bể là x (x>0) ⇒ Thời gian vòi thứ hai chảy 1 mình là x+4. Theo đề bài ta có:
Trong 1 giờ vòi 1 chảy 1 mình được số bể là \(\dfrac{1}{x}\)
Trong 1 giờ vòi 2 chảy 1 mình được số bể là \(\dfrac{1}{x+4}\)
Vì 2 vòi cùng chảy vào 1 cái bể thì \(\dfrac{7}{4}\) h đầy bể do đó ta có pt:
\(\dfrac{1}{x}+\dfrac{1}{x+4}=\dfrac{4}{15}\Rightarrow x+4+x=\dfrac{4}{15}x\left(x+4\right)\Leftrightarrow2x+4=\dfrac{4}{15}\left(x^2+4x\right)\Leftrightarrow30x+60=4x^2+16x\Leftrightarrow4x^2-14x-60=0\Leftrightarrow4x^2-24x+10x-60=0\Leftrightarrow\left(4x+10\right)\left(x-6\right)=0\Leftrightarrow x=6\)
Voi 1 chay 1 minh la 6h; voi 2 chay 1 minh la 6+4=10h.
Vay ...
Đổi 3 giờ 30 phút = 3,5 giờ
Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)
2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)
Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)
Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)
Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\) = \(\dfrac{2}{35}\)(bể)
Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)
Kết luận:.....
Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)
3h 30 phút = 3,5 h
Cả hai vòi cùng chảy trong 1 giờ:
1/x + 1/y = 1/3,5 (1)
Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:
3/x + 2/y = 4/5 (2)
Đặt u = 1/x; v = 1/y
(1) ⇔ u + v = 2/7
⇔ u = 2/7 - v
(2) ⇔ 3u + 2v = 4/5 (3)
Thế u = 2/7 - v vào (3) ta có:
(3) ⇔ 3.(2/7 - v) + 2v = 4/5
⇔ 6/7 - 3v + 2v = 4/5
⇔ -v = 4/5 - 6/7
⇔ -v = -2/35
⇔ v = 2/35
Thế v = 2/35 vào u = 2/7 - v, ta được:
u = 2/7 - 2/35
⇔ u = 8/35
*) Với u = 8/35
⇔ 1/x = 8/35
⇔ x = 35/8 (nhận)
*) Với v = 2/35
⇔ 1/y = 2/35
⇔ y = 35/2 (nhận)
Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể
Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể
giúp mình với