Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc cano khi mặt nước yên lặng là x (km/h) (x>3)
Ta có : Vận tốc cano khi xuôi dòng là : x + 3 (km/h)
Vận tốc cano khi ngược dòng là : x - 3 (km/h)
Phương trình : \(\frac{15}{x+3}+\frac{20}{60}+\frac{15}{x-3}=3\)
\(\Leftrightarrow\frac{1}{x+3}+\frac{1}{x-3}=\frac{8}{45}\)
Giải phương trình trên ta được x = 12 (vì x>0)
Vậy : Vận tốc cano khi nước yên lặng là 12 km/h
Giải toán bằng cách lập phương trình:
Gọi vận tốc ca nô khi nước lặng là: \(x\) km/h ( \(x\) > 0)
Vận tốc ca nô khi xuôi dòng là: \(x\) + 5 ( km/h)
Thời gian ca nô xuôi dòng là: \(\dfrac{60}{x+5}\) (giờ)
Vận tốc ca nô khi ngược dòng là: \(x\) -5 ( km/h)
Thời gian ca nô ngược dòng là: \(\dfrac{60}{x-5}\) ( giờ)
Theo bài ra ta có phương trình:
\(\dfrac{60}{x+5}+\dfrac{60}{x-5}\) = 5 = \(\dfrac{60}{12}\)
⇒ \(\dfrac{1}{x+5}\) + \(\dfrac{1}{x-5}\) = \(\dfrac{1}{12}\)
⇒ 12 \(\times\) ( \(x+5+x-5\)) = (\(x\) + 5)(\(x-5\))
⇒ 12 \(\times\) 2\(x\) = \(x^2\) - 25
\(x^2\) - 25 - 24\(x\) = 0 ⇒ \(x^2\) - 24\(x\) - 25 = 0
ta có a - b + c = 1 - ( -24) - 25 = 0 ⇒ \(x\) = -1 ( loại); \(x\)= 25 ( thỏa mãn)
Vậy vận tốc ca nô khi nước lặng là 25 km/h
gọi x (Km/ h)là vận tốc của ca nô khi nước yên lặng
vận tốc khi đi suôi dòng là x + 3
vận tốc khi đi ngực dòng là x - 3
thời gian khi đi suôi dòng là \(\dfrac{30}{x+3}\)
thời gian khi đi ngực dòng là \(\dfrac{30}{x-3}\)
thời gian nghỉ là 40 phút = \(\dfrac{40}{60}\) = \(\dfrac{2}{3}\) giờ
vì tổng thời gian từ lúc đi đến lúc trở về là 6 giờ
nên ta có phương trình :
\(\dfrac{30}{x+3}\)+\(\dfrac{30}{x-3}\)+\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{30.\left(x-3\right)+30.\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) +\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)+\(\dfrac{2}{3}\) = 6\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)= \(\dfrac{16}{3}\)
\(\Leftrightarrow\) 180x = 16x2 - 144\(\Leftrightarrow\) 16x2 -180x -144 = 0
\(\Leftrightarrow\) 4x2 - 45x -36 = 0
giải \(\Delta\) ta có 2 nghiệm :x1=12 (tmđk) ; x2=-\(\dfrac{3}{4}\) (loại)
vậy vận tốc khi nước yên lặng là 12(Km/h)
Gọi x (km/h) là vận tốc của ca nô khi nước yên lặng.
Điều kiện: x > 3
Khi đó vận tốc khi đi xuôi dòng trên sông là x + 3 (km/h)
vận tốc khi đi ngược dòng trên sông là x – 3 (km/h)
thời gian ca nô đi xuôi dòng là 30/(x + 3) (giờ)
thời gian ca nô đi ngược dòng là 30/(x - 3) (giờ)
thời gian ca nô nghỉ ở B là 40 phút = 2/3 (giờ)
Theo đề bài, ta có phương trình:
Giá trị x = - 3/4 không thỏa mãn điều kiện bài toán.
Vậy vận tốc của ca nô khi nước yên lặng là 12 km/h.
Gọi vận tốc của ca nô khi nước yên lặng là a (km/h) (a>3)
Vận tốc ca nô xuôi dòng là a+3 (km/h)
Vận tốc ca nô ngược dòng là a-3 (km/h)
Thời gian ca nô đi xuôi dòng là \(\frac{90}{a+3}\) (h)
Thời gian ca nô đi ngược dòng là \(\frac{90}{a-3}\) (h)
Theo bài ra ta có hệ phương trình :
\(\frac{90}{a+3}\) + \(\frac{1}{2}\) + \(\frac{90}{a-3}\) = 6
<=> 180(a-3) + (a+3)(a-3) + 180(a+3) = 12(a-3)(a+3)
<=> 11a2 - 360a - 45 = 0
<=> \(\orbr{\begin{cases}a=33\left(TM\right)\\a=\frac{-3}{11}\left(KTM\right)\end{cases}}\)
Vậy vận tốc của ca nô khi nước yên lặng là 33 km/h
Gọi vận tốc của ca nô khi nước yên lặng là a (km/h) (a>3) Vận tốc ca nô xuôi dòng là a+3 (km/h) Vận tốc ca nô ngược dòng là a-3 (km/h) Thời gian ca nô đi xuôi dòng là a + 3 90 (h) Thời gian ca nô đi ngược dòng là a − 3 90 (h) Theo bài ra ta có hệ phương trình : a + 3 90 + 2 1 + a − 3 90 = 6 <=> 180(a-3) + (a+3)(a-3) + 180(a+3) = 12(a-3)(a+3) <=> 11a2 - 360a - 45 = 0 <=> a = 33 TM a = 11 −3 KTM Vậy vận tốc của ca nô khi nước yên lặng là 33 km/h