Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia quãng đường từ A đến B làm sáu phần mỗi phần gọi là: \(s\left(km\right)\)
Cả quãng đường AB là: \(6s\left(km\right)\)
Gọi t là thời gian người đó đi trong \(\dfrac{1}{3}\) quãng đường
Thời gian người đó đi trên quãng đường AB là: \(3t\left(h\right)\)
Trong \(\dfrac{1}{3}\) thời gian người đó đi với vận tốc v2 :
\(s_2=\dfrac{1}{3}\cdot6s=2s\left(km\right)\)
Quãng đường mà người đó đi với vận tốc v3 :
\(s_3=\dfrac{1}{2}\cdot6s=3s\left(km\right)\)
Mà: \(s_1+s_2+s_3=s_{AB}\)
Quãng đường mà người đó đi được với vận tốc 20km/h:
\(s_1=s_{AB}-s_2-s_3=6s-2s-3s=s\left(km\right)\)
Giá trị của 1 trong 6 phần quãng đường AB là:
\(s=20\cdot\dfrac{1}{3}\cdot3t=20t\left(km\right)\)
Ta có tổng quãng đường đi là:
\(s_1+s_2+s_3=6s\left(km\right)\)
Tổng thời gian mà người đó đi là:
\(t_1+t_2+t_3=3t\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường:
\(v_{tb}=\dfrac{s_{AB}}{t}=\dfrac{6s}{3t}=\dfrac{2s}{t}\left(km/h\right)\)
Mà: \(s=20t\left(km\right)\) thay vào ta có:
\(v_{tb}=\dfrac{2\cdot20t}{t}=2\cdot20=40\left(km/h\right)\)
Vận tốc v2 không thể nhỏ hơn giá trị của v1 là 20 km/h.
a)
Thời gian An đến B:
\(t_A=\dfrac{1S}{2.30}+\dfrac{1S}{2.20}=\dfrac{1S}{24}\)
Thời gian Quý đến B:
\(S=30.\dfrac{1t}{2}+20.\dfrac{1t}{2}\Rightarrow t_Q=\dfrac{1S}{25}\)
Vậy Quý đến B nhanh hơn An: \(\dfrac{S}{24}>\dfrac{S}{25}\)
b)
Ta có: \(t_A-t_Q=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{S}{24}-\dfrac{S}{25}=\dfrac{1}{6}\Rightarrow S=100\left(km\right)\)
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Giải
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=s/v1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=s/v2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb = 2s/t1+ t2 (3)
Kết hợp (1); (2); (3) có: 1/v1 + 1/v2 = 2/vtb
Thay số vtb = 8km/h ; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h.
Vận tốc trung bình của xe xuất phát điểm từ A:
\(v_{tb1}=\dfrac{s}{t}=\dfrac{s}{\dfrac{s}{2}\left(\dfrac{1}{v_1}+\dfrac{1}{v_2}\right)}=\dfrac{1}{\dfrac{1}{2}\left(\dfrac{1}{20}+\dfrac{1}{60}\right)}=30\)(km/h)
Vận tốc trung bình của xe xuất phát điểm từ B:
\(v_{tb2}=\dfrac{s}{t'}=\dfrac{\dfrac{t}{2}\left(v_1+v_2\right)}{t}=\dfrac{\dfrac{1}{2}\left(20+60\right)}{1}=40\)(km/h)
Vì xe xuất phát từ B xuất phát chậm hơn xe xuất phát từ A là nửa tiếng tức là 0,5 h thì 2 xe đến đích cùng 1 lúc
\(t-t'=0,5\Rightarrow\dfrac{s}{v_{tb1}}-\dfrac{s}{v_{tb2}}=0,5\Rightarrow\dfrac{s}{30}-\dfrac{s}{40}=0,5\Rightarrow s=60\left(km\right)\)
Vậy ...
< Mình đã tắt ở đoạn tính toán nên chỗ sau dấu suy ra thứ 2 cậu tự bổ sung nha>
bài 1:
a/ Quãng đường đi trong 5s đầu: S5 = v0t5 + at52
Quãng đường đi trong 6s:S6 = v0t6 + at62
Quãng đường đi trong giây thứ 6:
S = S6 - S5 = 14 a = 2m/s2
b/ S20 = v0t20 + at202 = 460m
bài 4:
S1 = v0t1 + at12 4.v01 + 8a = 24 (1)
S2 = v01t2 + at22 4.v01 + 8a = 64 (2)
Mà v02 = v1 = v01 + at2 (3)
Giải (1), (2), (3) ta được : v01 = 1m/s, a = 2,5m/s2
2 bài còn lại ko bt lm
Đổi v1 = 2 m/s = 7.2 km/h
Thời gian đi 4km đầu là \(\dfrac{4}{7,2}\) = \(\dfrac{5}{9}\)(h)
Vận tốc trung bình của người đó là \(\dfrac{s_1 + s_2}{t_1 + t_2} = \dfrac{4 + 2}{\dfrac{5}{9} + \dfrac{1}{3}} = 6.75 (km/h)\)
đổi 2m/s=7,2km/h=> thời gian đi hết quãng đường đầu tiên :\(\dfrac{4}{7,2}=\dfrac{5}{9}\)(giờ)
=> Vận tốc trung bình người đó
Vtb=\(\dfrac{4+2}{\dfrac{5}{9}+\dfrac{1}{3}}=\dfrac{6}{\dfrac{8}{9}}=\dfrac{6.9}{8}=6,75km\)/giờ
1. Đối với ô tô (1):
\(v_{tb}=\dfrac{s}{t_1+t_2}=\dfrac{s}{\dfrac{s_1}{v_1}+\dfrac{s_2}{v_2}}\)
\(=\dfrac{s}{\dfrac{\dfrac{1}{2}s}{v_1}+\dfrac{\dfrac{1}{2}s}{v_2}}=\dfrac{1}{\dfrac{\dfrac{1}{2}}{v_1}+\dfrac{\dfrac{1}{2}}{v_2}}\)
Thay số: \(v_{tb}=30\left(km/h\right)\)
Đối với ô tô (2):
\(v_{tb}=\dfrac{s_1+s_2}{t}=\dfrac{v_1t_1+v_2t_2}{t}\)
\(=\dfrac{v_1\cdot\dfrac{1}{2}t+v_2\cdot\dfrac{1}{2}t}{t}=\dfrac{1}{2}v_1+\dfrac{1}{2}v_2\)
Thay số: \(v_{tb}=60\left(km/h\right)\).
2. Thời gian ô tô (1) đi: \(t_I=t_{I1}+t_{I2}=\dfrac{s_{I1}}{v_1}+\dfrac{s_{I2}}{v_2}\)
\(=\dfrac{\dfrac{1}{2}s}{v_1}+\dfrac{\dfrac{1}{2}s}{v_2}=\dfrac{\dfrac{1}{2}s}{20}+\dfrac{\dfrac{1}{2}s}{60}=\dfrac{1}{30}s\)
Xét ô tô (2):
\(t_{II-1}=\dfrac{1}{2}t_{II}\Leftrightarrow\dfrac{s_{II-1}}{v_1}=\dfrac{1}{2}t_{II}\Leftrightarrow s_{II-1}=\dfrac{1}{2}v_1t_{II}=10t_{II}\) (*).
Ta cũng có: \(t_{II-1}=t_{II-2}=\dfrac{1}{2}t_{II}\)
\(\Rightarrow\dfrac{s_{II-1}}{v_1}=\dfrac{s_{II-2}}{v_2}=\dfrac{s-s_{II-1}}{v_2}\)
\(\Leftrightarrow\dfrac{s_{II-1}}{20}=\dfrac{s-s_{II-1}}{60}\Leftrightarrow s_{II-1}=\dfrac{1}{4}s\).
Thay lại vào (*) \(\Rightarrow\dfrac{1}{4}s=10t_{II}\Leftrightarrow t_{II}=\dfrac{1}{40}s\)
Theo đề bài, ô tô (1) xuất phát trước ô tô (2) 30 phút và hai xe đến B cùng lúc nên:
\(t_I-t_{II}=\dfrac{30}{60}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{30}s-\dfrac{1}{40}s=\dfrac{1}{2}\Leftrightarrow s=60\left(km\right)\)
Cảm ơn