Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>0; y>0)
Trong 1 giờ, người thứ nhất làm được:
\(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được:
\(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được:
\(\dfrac{1}{16}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)
Vì nếu người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm được 1/4 công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\y=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 48 giờ để hoàn thành công việc khi làm một mình
Đáp án B
Gọi thời gian người thứ 1 làm một mình xong công việc là x (giờ), (điều kiện x > 0.
Gọi thời gian người thứ 2 làm một mình xong việc là y (giờ), ( điều kiện y > 0).
Vậy thời gian người thứ 1 làm một mình xong công việc là 12 giờ
Thời gian người thứ 2 làm một mình xong công việc là 18 giờ.
Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)
Ta lập hpt:
\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)
Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.
Cả 2 người thợ làm cùng nhau mỗi giờ làm được
\(\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{5}{12}\)( Công việc )
Cả 2 người thợ làm chung thì hoàn thành công việc sau
\(1:\dfrac{5}{12}=\dfrac{12}{5}=24h\)
Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x,y
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{6}{y}=\dfrac{5}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=24\end{matrix}\right.\)
Đáp án A
Gọi thời gian người thợ thứ nhất làm một mình xong việc là x(giờ) (x > 16)
Thời gian người thợ thứ hai làm một mình xong việc là y(giờ) (y > 16)
Suy ra trong thời gian 1 giờ người thợ thứ nhất làm được 1/x công việc
Trong thời gian 3 giờ người thợ thứ nhất làm được 3/x công việc
Trong thời gian 1 giờ người thợ thứ hai làm được 1/y công việc
Trong thời gian 6 giờ người thợ thứ hai làm được 6/y công việc
Hai người cùng làm trong 16 giờ thì xong việc, nên 1 giờ cả 2 người làm được 1/16 ta có phương trình:
Người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì được một phần tư công việc, ta có phương trình:
Từ đó ta có hệ phương trình:
Kết luận: thời gian người thợ thứ nhất làm một mình xong việc là 24 (giờ)
Thời gian người thợ thứ hai làm một mình xong việc là 48 giờ
Đổi: \(1h20p=\dfrac{4}{3}h\)
Gọi \(a,b\left(giờ\right)\) là thời gian làm một mình xong việc của hai người \(\left(a,b>0\right)\)
\(\Rightarrow\) Trong \(1h\) người \(1\) làm đc \(\dfrac{1}{a}\) việc.
\(\Rightarrow\) Trong \(1h\) người \(2\) làm đc \(\dfrac{1}{b}\) việc
Nếu hai người cùng làm một lúc thì sau \(\dfrac{4}{3}h\) là xong nên ta có phương trình:
\(\dfrac{4a}{3}+\dfrac{4b}{3}=1\)
Lại có: Người \(1\) làm trong \(\dfrac{1}{6}h\) và người \(2\) làm trong \(\dfrac{1}{5}\) giờ thì được \(\dfrac{1}{15}\) việc nên ta có phương trình:\(\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\left(2\right)\)
Từ: \(\left(1\right)+\left(2\right)\) ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{4a}{3}+\dfrac{4b}{3}=1\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\) Tự giải hệ ta được nghiệm:
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\left(tm\right)\)
Vậy nếu làm một mình thì người một làm trong \(2h\) và người hai làm trong \(4h\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)