Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Theo lời giải của cô Ms Hạnh - THCS NX)
Bài 1 : Theo thứ tự thực hiện phép tính, ta có :
\(-a^{2n}\) : Ta thực hiện lũy thừa trước rồi lấy 0 trừ đi lũy thừa đó, ta được \(-a^{2n}\)
Còn với \(\left(-a\right)^{2n}\), ta lấy \(\left(-a\right)\cdot\left(-a\right)\cdot\left(-a\right)\cdot...\) (2n thùa số)
Vì 2n là số chẵn => \(-a^{2n}\) là 1 số âm. Còn \(\left(-a\right)^{2n}\) là 1 số dương
=> \(-a^{2n}\) là số đối của \(\left(-a\right)^{2n}\).
Tương tự như vậy , em sẽ làm tiếp bài 2 và bài 3
Bài 1
Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)
Với trường hợp 2k + 1 (lẻ) ,ta có :
(n + 4)(n + 5)
= (2k + 1 + 4)(2k + 1 + 5)
= (2k + 5)(2k + 6)
= (2k + 5).2.(k + 3) chia hết cho 2 (1)
Với trường hợp 2k (chẵn) ,ta có :
(n + 4)(n + 5)
= (2k + 4)(2k + 5)
= 2.(k + 2)(2k + 5) chia hết cho 2 (2)
Từ 1 và 2
=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2
Gọi d la ƯCLN(2n+1,2n^2-1)ta có
2n+1 và 2n^2-1chia het cho d
2n^2+n-2n^2+1chia het cho d
n+1chia hết cho d
2(n+1)-2n+1chia het cho d
1chia hết cho d=>d€Ư(1)=1
Vậy ƯCLN(2n+1,2n^2-1)=1
Thêm dấu suy ra bạn nhé!
Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)
Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Do d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\) đpcm
goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d
2n+3: hết d
=> 2n+3-2n+1: hết d
2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...
Bài 1:
gọi a là ƯCLN của n+3 và 2n+5
=> a là ƯC của 2.(n+3)=2n+6 và 2n+5
=>a là Ư của (2n+6)-(2n+5)=2n+6-2n+5=1
=> a=1
vậy ƯCLN(n+3,2n+5)=1
Bài 2:
gọi a là ƯC của n+1 và 2n+5
=> 2n+5 chia hết cho a
n+1 chia hết cho a
=>(2n+5)-(n+1) chia hết cho a
=>3 chia hết cho a
=>3 chia hết cho 4 (vô lí)
vậy 4 không là ƯC của n+1 và 2n+5
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Gọi: d = ƯCLN ( 2n + 5; 2n + 4 ) ; \(d\in N\)*
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+4⋮d\end{cases}\Rightarrow}\left(2n+5\right)-\left(2n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy: ƯCLN ( 2n + 5; 2n + 4 ) = 1 ( đpcm )
Có 2n+5 luôn luôn lẻ
2n+4 luôn luôn chẵn
Suy ra 2n+5,2n+4 nguyên tố cùng nhau
hay UCLN ( 2n+5,2n+4 )=1(đpcm)