Cho hình bình hành ABCD( AC> BD ), hình chiếu vuông góc của C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

1) Có \(\widehat{ABC}=\widehat{ADC}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ADC}\) \(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)

Xét \(\Delta BCE\) và \(\Delta DCF\) có:

\(\Leftrightarrow\widehat{EBC}=\widehat{CDF}\)

\(\widehat{E}=\widehat{F}=90^0\)

nên \(\Delta BCE\sim\Delta DCF\left(g.g\right)\) \(\Rightarrow\dfrac{CE}{CF}=\dfrac{CB}{CD}\) \(\Leftrightarrow CE.CD=CF.CB\)

Có \(\widehat{EAF}+\widehat{ECF}=360^0-\widehat{AEC}-\widehat{AFC}=360^0-90^0-90^0=180^0\)

mà \(\widehat{BAD}+\widehat{ABC}=180^0\) (hai góc so le trong do BC//AD)

\(\Rightarrow\widehat{ECF}=\widehat{ABC}\) (1)

mà \(CE.CD=CB.CF\) (cm trên)\(\Leftrightarrow CE.AB=CB.CF\) \(\Leftrightarrow\dfrac{CE}{CB}=\dfrac{CF}{AB}\) (2)

Từ (1);(2) \(\Rightarrow\Delta ABC\sim\Delta FCE\left(c.g.c\right)\)

2. Kẻ \(DK\perp AC\) tại K

Dễ chững minh được \(\Delta ADK\sim ACF\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AD.AF=AC.AK\) (*)

Dễ chứng minh được \(\Delta CDK\sim\Delta ACE\left(g.g\right)\)

\(\Rightarrow\dfrac{CK}{AE}=\dfrac{CD}{AC}\Leftrightarrow CK.AC=AE.CD\) mà DC=AB

\(\Rightarrow AB.AE=CK.AC\)  (3*)

Từ (*);(2*) cộng vế với vế \(\Rightarrow AB.AE+AD.AF=AC.CK+AC.AK=AC\left(CK+AK\right)\)

\(\Rightarrow AB.AE+AD.AF=AC^2\)

Vậy...

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc IAB chung

=>ΔAIB đồng dạng vơi ΔAEC

b: ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC

c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có

góc FAC=góc ICB

=>ΔFAC đồng dạng với ΔICB

=>AF/IC=CA/CB

=>AF*CB=CA*IC

=>AB*AE+AF*CB=AC^2