Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do đó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
c: Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
a) Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(gt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên MF//AE và MF=AE
Xét tứ giác AEMF có
MF//AE(cmt)
MF=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)
c) Xét tứ giác AMCK có
F là trung điểm của đường chéo AC
F là trung điểm của đường chéo MK
Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
a: Xét tứ giác MNEP có
H là trung điểm của NP
H là trung điểm của ME
Do đó: MNEP là hình bình hành
b: Ta có: MNEP là hình bình hành
=>MN//PE
mà QP//MN
và PE,QP có điểm chung là P
nên E,P,Q thẳng hàng
a: Xét tứ giác ABEC có
H là trung điểm chung của AE và BC
nên ABEC là hình bình hành
b: ABEC là hình bình hành
nên AB//EC
mà AB//CD
nen CD//EC
=>C,D,E thẳng hàng