K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\)  (với t = x - y > 0)

\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)

Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....

True?

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

15 tháng 7 2017

Theo đề ta suy ra  \(y\le1-3x\)

\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)

Ta có  \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)

\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)

Vậy  \(A\ge8\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{4}\)

15 tháng 8 2020

\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)

dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)

Ta có (x+y)xy=x2+y2-xy

=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)

<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)

mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

Vậy Max A =16 khi \(x=y=\frac{1}{2}\)

19 tháng 9 2019

\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)

\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)

Check xem có sai chỗ nào ko:v

19 tháng 9 2019

Trời! Chứng minh vậy đọc ai hiểu được chời :)))

Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)

\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)

Lại quên dấu bằng xảy ra kìa em. 

"=" xảy ra <=> x=y=1/2

27 tháng 10 2018

Từ giả thiết ta có: \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Ta có: 

\(M=\frac{\left(x-1\right)+\left(y-1\right)}{y^2}-\frac{1}{y}+\frac{\left(y-1\right)+\left(z-1\right)}{z^2}-\frac{1}{z}+\frac{\left(z-1\right)+\left(x-1\right)}{x^2}-\frac{1}{x}\)

\(=\left[\frac{\left(x-1\right)}{y^2}+\frac{\left(x-1\right)}{x^2}\right]+\left[\frac{y-1}{y^2}+\frac{y-1}{z^2}\right]+\left[\frac{z-1}{z^2}+\frac{z-1}{x^2}\right]-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x-1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x-1\right)}{xy}+\frac{2\left(y-1\right)}{yz}+\frac{2\left(z-1\right)}{zx}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\)

Lại có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

\(\Rightarrow M\ge\sqrt{3}-2\)

Dấu bằng xảy ra khi x=y=z=\(\sqrt{3}\)