K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Số phần tử của tập X là  C 4 n 3

Gọi A là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O.

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4n-2 đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là C 2 n 1 . C 4 n - 2 1 .

Từ giả thiết suy ra  P A = C 2 n 1 . C 4 n - 2 1 C 4 n 3 = 1 13 ⇒ n = 10

Đáp án C

19 tháng 9 2017

Đáp án C

Phương pháp: Số tam giác vuông bằng số  đường kính của đường tròn có đầu mút  là 2 đỉnh của đa giác (H)  nhân với (2n – 2) tức là số đỉnh còn lại của đa giác.

Cách giải: Số phần tử của không gian mẫu:  n Ω = C 2 n 3

Tam giác vuông được chọn là tam giác chứa một cạnh là đường kính của đường tròn tâm O.

Đa giác đều 2n đỉnh chứa 2n đường chéo là đường kính của đường tròn tâm O, mỗi đường kính tạo nên 2n – 2 tam giác vuông.

Do đó số tam giác vuông trong tập S là: 

Xác suất chọn một tam giác vuông trong tập S :

25 tháng 11 2017

1 tháng 7 2019


Cho đa giác đều có 15 đỉnh. Gọi M là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc M, tính xác suất để tam giác được chọn là tam giác cân nhưng không phải là tam giác đều

A. 3/91

B. 18/91

C. 3/13

D. 1/26

9 tháng 12 2017

Đáp án B

Số phần tử của tập hợp M là: C 15 3

Gọi O là tâm đường tròn ngoại tiếp của đa giác đều, Xét một đỉnh A bất kỳ của đa giác: Có 7 cặp đỉnh của đa giác đối xứng với nhau qua đường thẳng OA, hay có 7 tam giác cân tại đỉnh A. Như vậy, với mỗi một đỉnh của đa giác có 7 tam giác nhận nó làm đỉnh tam giác cân.

Số tam giác đều có 3 đỉnh là các đỉnh của đa giác là 15 3 = 5 tam giác.

Tuy nhiên, trong các tam giác cân đã xác định ở trên có cả tam giác đều, do mọi tam giác đều thì đều cân tại 3 đỉnh nên tam giác đều được đếm 3 lần.

Suy ra, số tam giác cân nhưng không phải tam giác đều có 3 đỉnh là 3 đỉnh của đa giác đã cho là: 7.15 − 3.5 = 90

Do đó xác suất cần tìm là  P = 90 C 15 3 = 18 91

18 tháng 4 2019

26 tháng 11 2018

Đáp án B.

*Đa giác lồi (H) có 22 cạnh nên cũng có 22 đỉnh. Số tam giác có 3 đỉnh là đỉnh của đa giác (H) là C 22 3 = 1540  (tam giác)

Suy ra số phàn tử của không gian mẫu Ω là n ( Ω ) = C 1540 2 .  

*Số tam giác của một cạnh là cạnh của đa giác (H) là 22.18 = 396 (tam giác).

Số tam giác có hai cạnh là cạnh của đa giác (H) là 22 (tam giác)

Số tam giác không có cạnh nào là cạnh của đa giác (H) là:

1540 – 396 – 22 = 1122 (tam giác).

Gọi A là biến cố “Hai tam giác được chọn có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H)”

Số phần tử của A là n ( A ) = C 396 1 . C 1122 1 .  

*Vậy xác suất cần tìm là

P ( A ) = n ( A ) n ( Ω ) = C 396 1 . C 1122 1 C 1540 2 = 748 1995 ≈ 0,375.  

4 tháng 1 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

7 tháng 6 2019

Đáp án C

+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác

Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là  C 12 3 − 12 − 8.12

Vậy kết quả là C 12 3 − 12 − 8.12 C 12 3

7 tháng 6 2019

Chọn D.

Chọn ngẫu nhiên 3 đỉnh trong 14 đỉnh của đa giác => có C 14 3 = 364  cách.

Suy ra số phần tử của không gian mẫu là n Ω = 364 .

Gọi X là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”

Gọi O là tâm đường tròn ngoại tiếp đa giác đều => có 7 đường kính đi qua O.

Xét một đường kính bất kì, mỗi đỉnh còn lại sẽ tạo với đường kính một tam giác vuông.

Khi đó, số tam giác vuông được tạo ra là 7.(6+6)=84=>n(X)=84.

Vậy xác suất cần tính là