Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) d là đường trung trực của đoạn thẳng AB (gt).
M là điểm thuộc d (gt).
\(\Rightarrow MA=MB\) (Tính chất điểm thuộc đường trung trực).
\(\Rightarrow\Delta MAB\) cân tại M.
b) Xét \(\Delta MAB\) cân tại M:
MO là trung tuyến (O là trung điểm của AB).
\(\Rightarrow\) MO là phân giác \(\widehat{EMF}\) (Tính chất tam giác cân).
\(\Rightarrow\widehat{EMO}=\widehat{FMO}.\)
Xét \(\Delta MOE\) vuông tại E và \(\Delta MOF\) vuông tại F:
\(\widehat{EMO}=\widehat{FMO}\left(cmt\right).\\ MOchung.\)
\(\Rightarrow\) \(\Delta MOE\) \(=\) \(\Delta MOF\) (cạnh huyền - góc nhọn).
\(\Rightarrow ME=MF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta MEF\) cân tại M.
a: Ta có: M nằm trên đường trung trực của AB
nên MA=MB
Ta có: N nằm trên đường trung trực của AB
nên NA=NB
Xét ΔAMN và ΔBMN có
MA=MB
MN chung
AN=BN
Do đó: ΔAMN=ΔBMN
b: Ta có: ΔAMN=ΔBMN
nên \(\widehat{AMN}=\widehat{BMN}\)
hay MN là tia phân giác của góc AMB
c: Ta có: ΔAMN=ΔBMN
nên \(\widehat{MAN}=\widehat{MBN}\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó; ΔAHB=ΔAHC
b: Xét ΔABC có
AH là đường trung tuyến
AG=2/3AH
Do đó: G là trọng tâm
=>M là trung điểm của AC
c: Vì G là trọng tâm của ΔABC
mà N là trung điểm của AB
nên C,G,Nthẳng hàng
a: Ta có: N nằm trên đường trung trực của AB
nên NA=NB
b: Ta có:M nằm trên đường trung trực của AB
nên MA=MB
Xét ΔMAN và ΔMBN có
MA=MB
AN=BN
MN chung
Do đó: ΔMAN=ΔMBN
Suy ra: \(\widehat{MAN}=\widehat{MBN}=90^0\)