K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Xét phương trình hoành độ giao điểm: 2x – x2 = 3x – 6 có nghiệm x = 2 hoặc x = -3

suy ra hai giao điểm là (2; 0) và (-3; -15)

Chọn D.

17 tháng 6 2018

Ta có phương trình hoành độ giao điểm là

\(\dfrac{-1}{2}x^2=x-4\)

\(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Ta có : a(2;y1); b(-4;y2). Do hai điểm a và b cùng thuộc đường thẳng d nên ta có:

\(\left\{{}\begin{matrix}y_1=x_1-4=2-4=-2\\y_2=x_2-4=-4-4=-8\end{matrix}\right.\)

Khi đó ta có:

y1+y2 -5(x1+x2)=-2-8-5(2-4)=0 ⇒đpcm

VẬY..............

6 tháng 5 2019

Theo phương trình hoành độ giao điểm:

\(x+1-m=-x^2\)

\(\Leftrightarrow x^2+x+1-m=0\)

Phương trình cần 2 nghiệm phân biệt:

\(\Rightarrow\Delta>0\)

\(\Leftrightarrow1^2-4\left(1-m\right)>0\)

\(\Leftrightarrow4m-3>0\)

\(\Leftrightarrow m>\frac{3}{4}\)

Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=1-m\end{matrix}\right.\)

\(y_1=x_1+1-m\)

\(y_2=x_2+1-m\)

\(x_1+1-m-\left(x_2+1-m\right)=x_1^2-x_2^2+1\)

\(\Leftrightarrow x_1-x_2=x^2_1-x^2_2+1\)

Vậy với \(m>\frac{3}{4}\)thõa mản điều kiện ban đầu (?)

20 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)

23 tháng 1 2017

Đáp án A

3 tháng 1 2021

Đặt y= f(x) = \(x^2-2\left(m+\dfrac{1}{m}\right)x+m\)

Hoành độ đỉnh của đồ thị hàm số x=\(m+\dfrac{1}{m}\ge2\) (BĐT co-si)

vì hệ số a =1>0 nên hàm số nghịch biến trên \(\left(-\infty;m+\dfrac{1}{m}\right)\)

Suy ra, hàm số nghịch biến trên \(\left[-1;1\right]\)

=> y1 = f(-1) = \(3m+\dfrac{2}{m}+1\)

y2 = f(1)=\(1-m-\dfrac{2}{m}\)

theo đề bài ta có : y1-y2=8 <=> \(3m+\dfrac{2}{m}+1-1+m+\dfrac{2}{m}=8\left(m>0\right)\)

<=> \(m^2-2m+1=0\)

<=> m=1

3 tháng 1 2021

hệ số a = 1>0 tui tưởng nó nên làm hàm đồng biến chứ :D

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath

28 tháng 2 2019

M ở giữa ?

1/ Xét tam giác AMB và tam giác DMC :

AM= D M ( gt)

CM=BM ( gt)

\(\widehat{DMC}=\widehat{AMB}\)

=> \(\Delta AMB=\Delta DMC\)

2/

Từ cặp tam giác trên bằng nhau

=> \(\widehat{ABM}=\widehat{DCM}\)

Mà 2 góc này so le trong

=> \(AB\) // CD

=> \(AC\perp CD\Rightarrow\Delta ACD\) vuông

Xét hai tam giác ABC và CAD , có

CD = AB ( do tam giác AMB = DMC )
AC chung (gt)

góc ACD = góc CAB = 90 độ

=> Tam giác ABC = tam giác CAD ( trường hợp hai cạnh góc vuông )