Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(a-b)^2=(b-c)^2$
$\Rightarrow (a-b)^2-(b-c)^2=0$
$\Rightarrow (a-b-b+c)(a-b+b-c)=0$
$\Rightarrow (a-2b+c)(a-c)=0$
$\Rightarrow a=c$ hoặc $a+c=2b$
Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé.
CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học
a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60
áp dụng tích chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
\(\frac{a}{3}=5=>a=15\)
\(\frac{b}{4}=5=>b=20\)
\(\frac{c}{5}=5=>c=25\)
a, Gọi 3 cạnh của tam giác lần lượt là x, y, t
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)
\(\frac{x}{3}=5\Rightarrow a=15\)
\(\frac{y}{4}=5\Rightarrow a=20\)
\(\frac{t}{5}=5\Rightarrow a=25\)
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Do đó: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\forall a,c,b\)
Dấu '=' xảy ra khi a=b=c
Vậy: Đây là tam giác đều