K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

A=n2+n+1=n.n+n+1=n(n+1)+1

a,Vì n và (n+1) là  stn liên tiếp nên một trong 2 số đó là số chẵn.

=>n(n+1) chia hết cho 2.

=>n(n+1)+1 ko chia hết cho 2

=>a ko chia hết cho 2(đpcm)

b,Vì n và (n+1) là  stn liên tiếp nên chữ số tận cùng của chúng có thể là 0,2,6.

=>n(n+1)+1 có thể có chữ số tận cùng là1,3,7

=>a ko chia hết cho 5(đpcm)

11 tháng 8 2016

\(n^2+n+1=n.\left(n+1\right)+1\)

n.(n+1) lầ 2 số tự nhiên liên tiếp nên tích chúng chia hết cho 2.

1 ko chia hết cho 2.

Vậy......

b)Sử dụng dư hoặc dùng 5k loại.

Chúc em học tốt^^

20 tháng 7 2016

\(A=n^2+n+1\)

\(=n\left(n+1\right)+1\)

Vì n(n+1) là tích của hai số tự nhiên liên liếp nên có 1 số chẵn 

nên n(n+1) là số chẵn.Suy ra:n(n+1)+1 là số lẻ và ko chia hết cho 2

Vì n(n+1) chỉ có tân còn là:0,2,6 nên n(n+1)+1 chỉ có tận cùng là:1,3,7 ko chia hết cho 5

14 tháng 10 2019

Ta có :

n2+n+1 

= n(n+1)+1 

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên có tận cùng là 0,2,6 

=> n(n+1)+1 có tận cùng là 1,3,7

Tận cùng là 1 ,3,7 không chia hết cho 2 

                                 không chia hết cho 5 

Vậy n2+n+1 không chia hết 2 và không chia hết 5 

#học tốt# 

14 tháng 10 2015

1)Các số chia cho 5 dư 3 có tận cùng là 3 hoặc 8. Mỗi chục có 2 số. Vậy có tất cả:2.10=20(số)

2)Xét 2 trường hợp n lẻ và n chẵn

3)SGK

a) n(n+1) chia hết 2 vì n(n+1) là tích của 2 số tự nhiên liên tiếp. Do đó n(n+1)+1 ko chia hết cho 2

b) n^2+n+1=n(n+1)+1

Ta có: n(n+1) là tích của hai số tự nhiên liên tiếp nên tận cùng là 0;2;6. Suy ra n(n+1)+1 tận cùng = 1;3;7 ko chia hết cho 5

9 tháng 10 2016

a) A = n2 + n + 1

A = n.(n + 1) + 1

Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)

Mà \(1⋮̸2\)

Do đó, \(A⋮2̸\)

b) A = n.(n + 1) + 1

Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)

12 tháng 7 2016

Ta có : A = n2 + n + 1 = n(n+1) +1 

+) Chứng minh A \(⋮̸\) 2 

=> Giả sử n(n + 1 ) \(⋮\)2

     Nhưng 1 \(⋮̸\) 2

=> A \(⋮̸\) 2

+) Chứng minh A \(⋮̸\) 5

=> Giả sử n(n+1) \(⋮\) 5

    Nhưng 1 \(⋮̸\) 5

=> A \(⋮̸\) 5

19 tháng 7 2016

dễ mà :

a . A = n^2 + n + n = n ( n + 1 ) + 1 

n , n + 1 là hai số tự nhiên liến tiếp => n ( n + 1 ) là số chẵn 

=> n ( n + 1 ) + 1 là số lẻ 

=> A không chia hết cho 2 

b . Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 

19 tháng 7 2016

a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn

=>A=n2+n+1 là số lẽ không chia hết cho 2

*khi n  là số chẳn=> n2 là số chẳn ; n+1 là số lẻ

=>A=n2+n+1 là số lẻ không chia hết cho 2

Vậy A không chia hết cho 2

b)Ta có A=n2+n+1=n.(n+1)+1

Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:

=>n.(n+1) có thể tận cùng là 0;2;4;6;8

Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5

Với n.(n+1)=4

Ta lại có : 4=1.4=4.1=2.2

=>n.(n+1) khác 4

Vậy A không chia hết cho 5