Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho $n=1$ thì $(n+2)(n+9)=30$ không chia hết cho 49 cũng không chia hết cho 7. Bạn xem lại đề.
\(n^2+n+1=n\left(n+1\right)+1\)
vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2
=> A chia 2 dư 1 => A lẻ
a) Ta có : A = n2 + n + 1
= n(n + 1) + 1 (1)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp
=> n(n + 1) \(\in\)2k (k\(\inℕ\))
=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\))
mà 2k + 1 không chia hết cho 2
=> 2k + 1 là số lể
=> n2 + n + 1 là số lẻ (đpcm)
b) Từ (1) ta có : A = n(n + 1) + 1
Mà n(n + 1) = ....0 = ...2 = ...6
=> n(n + 1) + 1 = ....1 = ...3 = ...7
Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5
=> n(n + 1) + 1 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
Mk nghĩ bn chép sai đề rùi, đề phải như này mới đúng
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) là số chẵn
=> A = n.(n + 1) + 1 là số lẻ, không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
a) 4n+6 là số chẵn => tích trên chẵn
b) Giả sử : n là số chẵn => 8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2
Giả sử n là số lẻ =>8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2
Vậy biểu thức trên ko chia hết cho 2 với mọi n
A=n(n+1)+1
Vì n(n+1) chia hết cho 2
nên A=n(n+1)+1 không chia hết cho 2