K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(3x+1+3y-2xy-x^2-y^2\)

\(=1+\left(3x+3y\right)-\left(x^2+2xy+y^2\right)\)

\(=1+3\left(x+y\right)-\left(x+y\right)^2\)

Thay x + y = 2 vào biểu thức trên, ta có:

\(1+3\times2-2^2=1+6-4=3\)

Vậy tại x + y = 2 giá trị của biểu thức trên là 3

24 tháng 4 2021

T = x2 + 2xy + y2 - 2x - 2y - 1 

= (x + y)2 - 2(x + y) + 1 - 2

= (x + y - 1)2 - 2 \(\ge\)-2 

Dấu "=" xảy ra <=> x + y - 1 = 0

=> x + y = 1

Vậy Min A = -2 <=> x + y = 1

8 tháng 3 2017

Bài này không khó cách làm thế này:

x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4

= (x + y +1 )2 +4

Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4

Dấu "=" xảy ra khi và chỉ khi x=y=-0,5

Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.

Xong rồi đó. Có gì sai sót các bạn góp ý nhé.

8 tháng 3 2017

x2 + y2 + 2x + 2y + 2xy + 5

= x2 + y2 + 12 + 2x + 2y + 2xy + 4

= (x + y + 1)2 + 4 \(\ge\) 4

18 tháng 2 2016

 x^2-y^2=2=(x-y).(x+y)

ta co bang

x-y   1   2    -1    -2

y+x   2   1     -2    -1

x      1.5          -1.5

y       0.5             -0.5

17 tháng 2 2017

P(x) có giá trị bằng tổng các hệ số của nó khi x=1 tức là: \(P\left(x\right)=\left(1-\frac{1}{2}-\frac{1}{2}\right)^{1008}=0\Leftrightarrow a_{2016}+a_{2015}+...+a_0=0\)

8 tháng 8 2019

1/x^3 - 2x^2 - 9x + 18

= x\(^2\)( x - 2 ) - 9 ( x - 2 ) = ( x\(^2\) - 9 ) ( x - 2 )= ( x - 3 ) ( x +3 ) ( x - 2 )

2/3x^2 -5x - 3y^2 + 5y

= 3( x\(^2\) - y\(^2\) ) - 5 ( x - y ) = 3 ( x - y ) ( x + y ) - 5 ( x - y ) = ( x - y ) [ 3( x+ y ) - 5 ]

= ( x - y ) ( 3x + 3y - 5 )

3/49 - x^2 + 2xy - y^2

= 49 - ( x\(^2\) - 2xy + y\(^2\) ) = 49 - ( x - y )\(^2\) = ( 7 - x + y ) ( 7 + x - y )

5/ x^2 - 4x^2y^2 + 2xy

= x ( x - 4xy\(^2\) + 2y )

6/ 3x - 3y - x^2 + 2xy - y^2

= ( 3x - 3y ) - ( x\(^2\) - 2xy + y\(^2\) ) = 3 ( x - y ) - ( x - y )\(^2\) = ( x - y ) ( 3 - x + y )

14 tháng 2 2017

\(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)

\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)

Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)

=> 

14 tháng 2 2017

 Cho a+b+c=0 và a+b2 +c=1.Tìm a4+b4+c4.