Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
x^2-y^2=2=(x-y).(x+y)
ta co bang
x-y 1 2 -1 -2
y+x 2 1 -2 -1
x 1.5 -1.5
y 0.5 -0.5
1/x^3 - 2x^2 - 9x + 18
= x\(^2\)( x - 2 ) - 9 ( x - 2 ) = ( x\(^2\) - 9 ) ( x - 2 )= ( x - 3 ) ( x +3 ) ( x - 2 )
2/3x^2 -5x - 3y^2 + 5y
= 3( x\(^2\) - y\(^2\) ) - 5 ( x - y ) = 3 ( x - y ) ( x + y ) - 5 ( x - y ) = ( x - y ) [ 3( x+ y ) - 5 ]
= ( x - y ) ( 3x + 3y - 5 )
3/49 - x^2 + 2xy - y^2
= 49 - ( x\(^2\) - 2xy + y\(^2\) ) = 49 - ( x - y )\(^2\) = ( 7 - x + y ) ( 7 + x - y )
5/ x^2 - 4x^2y^2 + 2xy
= x ( x - 4xy\(^2\) + 2y )
6/ 3x - 3y - x^2 + 2xy - y^2
= ( 3x - 3y ) - ( x\(^2\) - 2xy + y\(^2\) ) = 3 ( x - y ) - ( x - y )\(^2\) = ( x - y ) ( 3 - x + y )
, \(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)
\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)
Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)
=>
\(3x+1+3y-2xy-x^2-y^2\)
\(=1+\left(3x+3y\right)-\left(x^2+2xy+y^2\right)\)
\(=1+3\left(x+y\right)-\left(x+y\right)^2\)
Thay x + y = 2 vào biểu thức trên, ta có:
\(1+3\times2-2^2=1+6-4=3\)
Vậy tại x + y = 2 giá trị của biểu thức trên là 3