Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bạn nói đã giải câu a, b rồi nên mình chỉ giải câu c thôi
Ta có: HAK + EAK + HAD = 90 độ
=> HAK + EKA + AHD = 90 độ
=> HAK + 90 độ - AKH + 90 độ - AHK = 90 độ
=> AKH + AHK - HAK = 90 độ
=> 180 độ - HAK - AHK + AHK - HAK = 90 độ
=> 2HAK = 90 độ
=> HAK = 45 độ
Chỗ nào ko hiểu bn nhớ hỏi mình nha
cảm ơn bạn nha
bạn cho mình hỏi muốn k câu trả lời thì làm thế nào????
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
a) BD; CE là đường cao => tam giác ABD và tam giác ACE vuông : có: AB = AC (do tam giác ABC cân tại A ); góc A chung
=> tam giác ABD = ACE (cạnh huyền - góc nhọn )
b) Tam giác BDC vuông tại D có trung tuyến DH ứng với cạnh huyền BC => DH = HC = BC/ 2
=> tam giác HDC cân tại H
c) sửa đề: chứng minh: DM = MC
Tam giác DHC cân tại H có HM là đuơng cao nên đông thời là đường trung tuyến => M là TĐ của DC=> DM = MC
d) Tam giác HND vuông tại M có: MI là trung tuyến => MI = HI = HD/2
=> tam giác IHM cân tại I => góc IHM = IMH
lại có HM là p/g của góc DHC => góc IHM = MHC
=> góc IMH = MHC mà 2 góc này ở vị trí SLT => MI // HC mà HC vuông góc với AH
=> MI vuông góc với AH
bạn Nobita Kun giải bài không theo điểm như đề bài cho, ý c đề bài đúng rồi ạ. ý d thì bạn hiểu nhầm đề rồi, bạn xem lại điểm I nhé
a) xét tam giác ABD và tam giác BMD có:
góc B1 = góc B2 (gt)
BD chung
góc A = góc M = 900
=> tam giác ABD = tam giác BMD (g.c.c)
=> AB = BM (cạnh tương ứng)
=> tam giác ABM cân tại B
b) bó tay
*bạn tự vẽ hình nhé
a) Xét Δ AMB và Δ DMC có :
BM = CM (gt)
AM = DM (gt)
góc M1 = M2 ( 2 góc đối đỉnh )
=> ΔAMB = ΔDMC (c-g-c)
=> góc MBA = góc MCD ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
Bạn ơi đề yêu cầu là : Chứng minh rằng : Tam giác xyz là TAM GIÁC CÂN ?