Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
viết theo hàng nghìn,trăm,chuc,don vị là
1000n+100(n+1)+10(n+2)+n+3=1111n+123
viết theo thứ tự ngược lại là
1000(n+3)+100(n+2)+10(n+1)+n=1111n+321...
vậy lớn hơn số ban đầu là 3210-123=3087
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Bài 1: Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d
Bài 2: Số đó chia hết cho 4 và 5 nên y=0
Vậy 6+x+1+4+y = 11+x chia hết cho 3
=> x=1, 4; 7
Vậy ta tìm được 3 số: 61140 ; 64140; 67140
( Gọi x (km/h) là vận tốc người thứ hai. y (km) là chiều dài quãng đường đua.
Điều kiện: x 3, y > 0
Ta có: x + 15 (km/h) là vận tốc môtô thứ nhất. x – 3 (km/h) là vận tốc mô tô người thứ ba
Đổi 12 phút = 1/5 giờ 3 phút = 1/20 giờ
Theo đề bài ta có hệ phương trình trên và Phương pháp giải hệ phương trình trên.
Kết quả: x = 75, y = 90
Vậy vận tốc mô tô thứ nhất là: 90 km/h; vận tốc mô tô thứ hai là 75 km/h; vận tốc mô tô thứ ba là 72 km/h
Từ 109 đến 120 cần : 1 (chữ số 8)
⇒ Từ 109 đến 200 cần : 1.9=9 (chữ số 8)
⇒ Từ 200 đến 900 cần : (9-2+1).1.9=72 (chữ số 8)
⇒ Từ 109 đến 900 cần : 72+1=73 (chữ số 8)
sossssssssssssssss