K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a) Ta có n.(n+1).(n+2) là 3 số tự nhiên liên tiếp và các số chia hết cho 6 là các số chia hết cho 2 và 3.

- n.(n+1).(n+2) chia hết cho 2.

+ Nếu n là số lẻ thì n + 1 là số chẵn => n.(n+1).(n+2) chia hết cho 2.

+ Nếu n là số chẵn => n.(n+1).(n+2) chia hết cho 2.

Vậy n.(n+1).(n+2) chia hết cho 2 với mọi n.

- n.(n+1).(n+2) chia hết cho 3.

+ Nếu n chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.

+ Nếu n chia 3 dư 1 thì n + 2 chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3.

Vậy n.(n+1).(n+2) chia hết cho 3 với mọi n.

Vì n.(n+1).(n+2) chia hết cho 2 và 3 => n.(n+1).(n+2) chia hết cho 6.

b) A = 19208+1 / 19200+ 1. Vì 19208 > 19200 và 1 = 1 => 19208+1 > 19200+ 1 => A > 1 (vì tử lớn hơn mẫu)

B= 19200+1/ 19210 +1 . Vì 19200 > 19210 và 1 = 1 => 19200 + 1 < 19210 + 1 => B < 1 (vì tử bé hơn mẫu)

Vì A > 1 , B < 1 => A > B. ( tính chất bắt cầu)

13 tháng 3 2018

mik hieu dc 3 cau roi

6 tháng 11 2016

b, Vì 9^n với n  bất kì đc số tận cùng =9

=>9^2n+1+1=...9+1=...0

Có tận cùng =0 suy ra 9^2n+1+1 chi hết cho 10(đpcm)

15 tháng 8 2016

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

16 tháng 8 2016

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

19 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

2:

a: Gọi d=ƯCLN(4n+7;2n+3)

=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

=>d=1

=>ƯCLN(4n+7;2n+3)=1

b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)

=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)

=>\(1⋮d\)

=>d=1

=>Đây là phân số tối giản

3 tháng 7 2016

Ta có: 

A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2

=> n.(n + 1) + 1 không chia hết cho 2

=> A không chia hết cho 2 (đpcm)

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

Ủng hộ mk nha ^_-

3 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)  \(\left(n\in N\right)\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

9 tháng 10 2016

a) A = n2 + n + 1

A = n.(n + 1) + 1

Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)

Mà \(1⋮̸2\)

Do đó, \(A⋮2̸\)

b) A = n.(n + 1) + 1

Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)