Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(2x-1\right)-x\left(3x-2\right)=3x\left(1-x\right)+2\)
\(6x-3-3x^2+2x=3x-3x^2+2\)
\(6x-3x^2+2x-3x+3x^2=2+3\)
\(5x=5\)
\(x=1\)
b) \(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^2-2x^2=0\)
\(-2x^2=0\)
\(x^2=0\)
\(x=0\)
\(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^5+x+1\)
a) 2x(3x^2 -5x + 3) = 6x^3 - 10x^2 + 6x
b) -2x(x^2 +5x-3) = -2x^3 - 10x^2 + 6x
c) 2 dấu trừ liền nhau??
bài 2:
a) \(\left(2x-1\right)\left(x^2+1\right)=2x^3-x^2+2x-1\)
b) \(-\left(5x-4\right)\left(2x+3\right)=-\left(10x^2-8x+15x-12\right)=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=8x^3-4x^2y-4x^2y+2xy^2+2xy^2-y^3=8x^3-8x^2y+2xy^2-y^3\)
d) \(\left(3x-4\right)\left(x+4\right)+\left(5-x\right)\left(2x^2+3x-1\right)=3x^2+8x-16+10x^2-2x^3+15x-3x^2-5+x=10x^2+24x-21\)
e) \(7x\left(x-4\right)-\left(7x+3\right)\left(2x^2-x+4\right)=7x^2-28x-\left(14x^3+6x^2-7x^2-3x+28x+12\right)=-14x^2+8x^2-53x-12\)
a) \(\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}=\frac{4x^2.5y.3y}{5y^2.6x.2x}=1\)
b)\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)
c) \(\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3