Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
c: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Bài 3:
\(a,=3x\left(y-4x+6y^2\right)\\ b,=5xy\left(x^2-6x+9\right)=5xy\left(x-3\right)^2\\ d,=\left(x+y\right)\left(x-12\right)\\ f,=2x\left(x-y\right)\left(5x-4y\right)\\ g,=\left(x-2\right)\left(x-2+3x\right)=\left(x-2\right)\left(4x-2\right)=2\left(x-2\right)\left(2x-1\right)\\ h,=x^2\left(1-5x\right)+3xy\left(5x-1\right)=x\left(1-5x\right)\left(x-3y\right)\\ i,=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\\ j,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ k,=4x^2-12x+3x-9=\left(x-3\right)\left(4x+3\right)\\ l,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ m,=x^2-\left(2y-6\right)^2=\left(x-2y+6\right)\left(x+2y-6\right)\\ n,=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-25\\ =\left(x^2+5x\right)\left(x^2+5x+10\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)
Bài 6:
a: \(M=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a: \(x\left(x-1\right)-x^2+4x=-3\)
\(\Leftrightarrow x^2-x-x^2+4x=-3\)
hay x=-1
c, là hằng đẳng thức nha bạn
(\(\sqrt{x}\)+\(\sqrt{2x}\))2=0
suy ra \(\sqrt{x}\)+\(\sqrt{2x}\)=0
\(\sqrt{x}\)=\(\sqrt{2x}\)
suy ra x=0
Bài 2: Tìm x:
a) \(3x^2\)\(-27x=0\)
\(< =>3x\left(x-9\right)=0\)
\(=>x=0\) hay \(x-9=0\)
\(=>x=0\) hay \(x=9\)
Câu 5:
\(VT=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\\ =\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{zx+z+1}\\ =\dfrac{zx+z+1}{zx+z+1}=1\)
a: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
b: \(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
c: \(=\dfrac{6-7+x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}=\dfrac{1}{3}\)
d: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
5) BPT \(\Leftrightarrow\dfrac{30x-45}{60}-\dfrac{20x+20}{60}>\dfrac{30}{60}-\dfrac{36-12x}{60}\)
\(\Leftrightarrow10x-65>12x-6\) \(\Leftrightarrow-2x>59\) \(\Leftrightarrow x< -\dfrac{59}{2}\)
Vậy ...
7) ĐK: \(x\ne-3\)
BPT \(\Leftrightarrow\dfrac{x+1}{x+3}-1>0\) \(\Leftrightarrow\dfrac{x+1}{x+3}-\dfrac{x+3}{x+3}>0\) \(\Leftrightarrow\dfrac{-2}{x+3}>0\)
\(\Rightarrow x+3< 0\) \(\Leftrightarrow x< -3\)
Vậy ...
9) Sửa đề: \(\dfrac{x^2+2x+2}{x^2+3}\ge1\)
\(\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-1\ge0\) \(\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-\dfrac{x^2+3}{x^2+3}\ge0\) \(\Leftrightarrow\dfrac{2x-1}{x^2+3}\ge0\)
\(\Rightarrow2x-1\ge0\) \(\Leftrightarrow x\ge\dfrac{1}{2}\)
Vậy ...
11) BPT \(\Leftrightarrow3x-2\le0\) \(\Leftrightarrow x\le\dfrac{2}{3}\)
Vậy ...
cảm ơn bạn