K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = 4x^3 + 15x^2 + 24x + 3 + a 

B = x^2 + 4x + 7 

=> A : B hay ( 4x^3 + 15x^2 + 24x + 3 + a ) : ( x^2 + 4x + 7 ) = 10 + a 

Để A chia hết B 

=> 10 + a = 0 <=> a = -10 

a)Vì đa thức dư 10 + a nên a = -10 thì A\(⋮\)B.

b) Vì đa thức dư là (2a-3)x + 3b + a 

nên \(a=\frac{3}{2};b=-\frac{1}{2}\)thì \(A⋮B\)

1 tháng 1 2016

Kẻ đường cao AH vuông góc với BC ( H thuộc BC )

Vì tam giác AHC là tam giác vuông nên theo định lí Pi - ta - go, ta có :

    AH2   =AC2-HC2 =52-32

                                      =16 =42

=> AH = 4cm (áp dụng định lí Pi - ta- go)

Vậy tam giác cân ABC có diện tích là:

1/2(AH*BC) = 1/2(6*4)

                  =12cm2

30 tháng 12 2015

Ừ , chờ mình xem đã 

23 tháng 7 2017

- Xét \(\Delta OAD\)có :   EA = EO (gt)      ;       FO = FD (gt)

= >       EF là đường trung bình của \(\Delta OAD\) =>   \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC )                (1)

Xét \(\Delta ABO\) đều , có E là trung điểm AO =>   BE là đường trung tuyến của tam giác ABO =>  BE là đường cao của tam giác ABO

\(\Rightarrow BE⊥AC\left\{E\right\}\)

- Xét tam giác EBC vuông tại E , có : BK = KC =>  EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC

=>   \(EK=\frac{1}{2}BC\) (2)

- Xét tam giác OCD , có 

+ OD = OC ( Vì BD = AC và OB = OA =>   BD-OB = AC - OA  =>   OD = OC   )

\(\widehat{COD}=60^o\)( Vì tam giác OAB đều )

=> tam giác OCD đều 

-Xét tam giác đều OCD , có FO = FD =>   CF là trung tuyến của tam giác OCD  =>   CF  là đường cao của tam giác OCD

HAy  \(CF⊥BD\left\{F\right\}\)

- Xét tam giác FBC vuông tại F , có BK = KC (gt)

=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC

=>  \(FK=\frac{1}{2}BC\)  (3)

TỪ (1) , (2) và (3) , ta có  :  \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)

=>>>> tam giác EFK đều

23 tháng 7 2017

cảm ơn nhiều nha Trần Anh

11 tháng 11 2021

Câu 4: D

22 tháng 3 2018

Xét hiệu:       \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\)   (do  a+b+c = 0)

\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\)\(a^3+b^3+c^3=3abc\)  (đpcm)

20 tháng 7 2017

lỡ tay bấm -_-; tiếp

F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)

Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)

=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)

19 tháng 7 2017

bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi

10 tháng 5 2017

Sao đề lạ thế hai Bt cùng giá trị sao làm được

10 tháng 5 2017

ừ nó v đấy chép nguyên văn luôn

22 tháng 5 2021

Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)

Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x

\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)

Bài 5:

Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x

\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)

\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)

PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)

\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)

Vậy pt vô nghiệm

 

 

 

29 tháng 4 2016

đề bài là j vậy