Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH vuông góc với BC ( H thuộc BC )
Vì tam giác AHC là tam giác vuông nên theo định lí Pi - ta - go, ta có :
AH2 =AC2-HC2 =52-32
=16 =42
=> AH = 4cm (áp dụng định lí Pi - ta- go)
Vậy tam giác cân ABC có diện tích là:
1/2(AH*BC) = 1/2(6*4)
=12cm2
- Xét \(\Delta OAD\)có : EA = EO (gt) ; FO = FD (gt)
= > EF là đường trung bình của \(\Delta OAD\) => \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC ) (1)
Xét \(\Delta ABO\) đều , có E là trung điểm AO => BE là đường trung tuyến của tam giác ABO => BE là đường cao của tam giác ABO
\(\Rightarrow BE⊥AC\left\{E\right\}\)
- Xét tam giác EBC vuông tại E , có : BK = KC => EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC
=> \(EK=\frac{1}{2}BC\) (2)
- Xét tam giác OCD , có
+ OD = OC ( Vì BD = AC và OB = OA => BD-OB = AC - OA => OD = OC )
+ \(\widehat{COD}=60^o\)( Vì tam giác OAB đều )
=> tam giác OCD đều
-Xét tam giác đều OCD , có FO = FD => CF là trung tuyến của tam giác OCD => CF là đường cao của tam giác OCD
HAy \(CF⊥BD\left\{F\right\}\)
- Xét tam giác FBC vuông tại F , có BK = KC (gt)
=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC
=> \(FK=\frac{1}{2}BC\) (3)
TỪ (1) , (2) và (3) , ta có : \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)
=>>>> tam giác EFK đều
Xét hiệu: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\) (do a+b+c = 0)
\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\) (đpcm)
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)
Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x
\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)
Bài 5:
Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x
\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)
\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)
PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)
\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)
Vậy pt vô nghiệm
A = 4x^3 + 15x^2 + 24x + 3 + a
B = x^2 + 4x + 7
=> A : B hay ( 4x^3 + 15x^2 + 24x + 3 + a ) : ( x^2 + 4x + 7 ) = 10 + a
Để A chia hết B
=> 10 + a = 0 <=> a = -10
a)Vì đa thức dư 10 + a nên a = -10 thì A\(⋮\)B.
b) Vì đa thức dư là (2a-3)x + 3b + a
nên \(a=\frac{3}{2};b=-\frac{1}{2}\)thì \(A⋮B\)