Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18:
a: \(K=2\cdot\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{a\left(a-1\right)}{\sqrt{a}+1}\)
\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=2\sqrt{a}\)
b: K=căn 2012
=>căn 4a=căn 2012
=>4a=2012
=>a=503
1:
4:
a: \(B=\dfrac{x-x+\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Khi x=9/25 thì B=3/5:(3/5-1)=3/5:(-2/5)=-3/2
b: \(A=\dfrac{x-1+\sqrt{x}+2-x}{x-\sqrt{x}}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\)
c: P=B:A
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}+1}\)
P nguyên
=>x-1+1 chia hết cho căn x+1
=>căn x+1 thuộc Ư(1)
=>căn x+1=1 hoặc căn x+1=-1
=>căn x=-2(loại) hoặc căn x=0(loại)
3:
1: Thay x=3+2căn 2 vào B, ta được:
\(B=\dfrac{3+2\sqrt{2}+12}{\sqrt{2}+1-1}=\dfrac{15+2\sqrt{2}}{\sqrt{2}}=\dfrac{15\sqrt{2}+4}{2}\)
2:
\(A=\dfrac{\sqrt{x}-2-4\sqrt{x}-8+x+12}{x-4}=\dfrac{x-3\sqrt{x}+2}{x-4}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-1\right)}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\cdot\dfrac{x+2}{\sqrt{x}-1}=\dfrac{x+2}{\sqrt{x}+2}\)
\(=\dfrac{x-4+6}{\sqrt{x}+2}\)
\(=\sqrt{x}-2+\dfrac{6}{\sqrt{x}+2}\)
\(=\sqrt{x}+2+\dfrac{6}{\sqrt{x}+2}-4\)
=>\(P>=2\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{6}{\sqrt{x}+2}}-4=2\sqrt{6}=-4\)
Dấu = xảy ra khi (căn x+2)^2=6
=>căn x+2=căn 6
=>căn x=căn 6-2
=>x=10-4*căn 6
câu 2 thì mk có pt nhưng mk ko bt giải
\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{10}\\x-y=15\end{matrix}\right.\)
9.
a, \(x^4-x^3-14x^2+x+1=0\)
\(< =>x^4+3x^3-x^2-4x^3-12x^2+4x-x^2-3x+1=0\)
\(< =>x^2\left(x^2+3x-1\right)-4x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)=0\)
\(< =>\left(x^2-4x-1\right)\left(x^2+3x-1\right)=0\)
\(=>\left[{}\begin{matrix}x^2-4x-1=0\left(1\right)\\x^2+3x-1=0\left(2\right)\end{matrix}\right.\)
giải pt(1) \(=>x^2-4x+4-5=0< =>\left(x-2\right)^2-\sqrt{5}^2=0\)
\(=>\left(x-2-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)=0\)
\(=>\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\)
giải pt(2) \(\)\(=>x^2+3x-1=0< =>x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=0\)
\(< =>\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{13}}{2}\right)^2=0\)
\(=>\left(x+\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{13}}{2}\right)=0\)
tương tự cái pt(1) ra nghiệm rồi kết luận
b, đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)=>x^2+1=a^2\)
\(=>x^4=\left(a^2-1\right)^2\)
\(=>pt\) \(\left(a^2-1\right)^2+a^2.a-1=0\)
\(=>a^4-2a^2+1+a^3-1=0\)
\(< =>a^4-2a^2+a^3=0< =>a^2\left(a+2\right)\left(a-1\right)=0\)
\(->\left[{}\begin{matrix}a=0\left(ktm\right)\\a=-2\left(ktm\right)\\a=1\left(tm\right)\end{matrix}\right.\)rồi thế a vào \(\sqrt{x^2+1}\)
\(=>x=0\)
Bài 4:
c) Ta có: \(x^4+3x^2-4=0\)
\(\Leftrightarrow x^4+4x^2-x^2-4=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
Bài 5:
b) Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}=\dfrac{x+3}{97}+\dfrac{x+4}{96}\)
\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}-\dfrac{x+100}{97}-\dfrac{x+100}{96}=0\)
\(\Leftrightarrow x+100=0\)
hay x=-100
Bài 2:
c: Để hai đường thẳng song song thì m-1=2
hay m=3
1: