K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Câu 21:

1: \(\Leftrightarrow5\sqrt{x-1}=10\)

=>căn x-1=2

=>x-1=4

=>x=5

2: Để hai đường song song thì -2m=3m-5

=>-5m=-5

=>m=1

23 tháng 3 2018

Đặt \(\frac{3m^2-2m+1}{\left(m+1\right)^2}=a\)\(\Leftrightarrow3m^2-2m-1=a\left(m+1\right)^2=am^2+2am+a\)

                                                 \(\Leftrightarrow3m^2-am^2-2m-2am+1-a=0\)

                                                  \(\Leftrightarrow\left(3-a\right)m^2-\left(2+2a\right)m+1-a=0\)

\(\Delta=\left(2+2a\right)^2-4\left(1-a\right)\left(3-a\right)=24a-8\)

Để pt có nghiệm:\(24a-8\ge0\Leftrightarrow a\ge\frac{1}{3}\)

Vậy bt ban đầu đạt GTNN là 1/3 khi m=1/2

23 tháng 3 2018

Đọc tự hiểu nhé ,có j kb hỏi lại mik

1 tháng 11 2021

\(21,B\\ 22,B\\ 23,C\\ 24,A\\ 25,B\\ 16,C\\ 17,C\\ 18,D\\ 19,B\\ 20,A\)

Hóa bạn qua bên box Hóa đăng nhé

6 tháng 9 2021

4.

a, \(A=\sqrt[3]{15\sqrt{3}+26}=\sqrt[3]{\left(\sqrt{3}+2\right)^3}=\sqrt{3}+2\)

b, \(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

\(\Rightarrow2B=\sqrt[3]{40+16\sqrt{13}}+\sqrt[3]{40-16\sqrt{13}}\)

\(=\sqrt[3]{\left(\sqrt{13}+1\right)^3}+\sqrt[3]{\left(\sqrt{13}-1\right)^3}\)

\(=\sqrt{13}+1+\sqrt{13}-1=2\sqrt{13}\)

\(\Rightarrow B=\sqrt{13}\)

c, \(C=\sqrt[3]{182-\sqrt{33125}}+\sqrt[3]{182+\sqrt{33125}}\)

\(\Rightarrow C^3=364+3\sqrt[3]{182-\sqrt{33125}}.\sqrt[3]{182+\sqrt{33125}}\left(\sqrt[3]{182-\sqrt{33125}}+\sqrt[3]{182+\sqrt{33125}}\right)\)

\(=364-3C\)

\(\Rightarrow C^3+3C-364=0\)

\(\Leftrightarrow C=7\)

7 tháng 10 2015

\(=\sqrt{3\left(x^2-2x+1\right)+25}\supseteq\sqrt{3\left(x+1\right)^2+25}\supseteq5\)

min=5 <=>x=-1

7 tháng 10 2015

\(\text{Đặt }A=\sqrt{3x^2-6x+28}=\sqrt{3x^2-6x+3+25}\)

\(=\sqrt{3.\left(x^2-2x+1\right)+25}=\sqrt{3.\left(x-1\right)^2+25}\)

\(\Rightarrow A^2=3.\left(x-1\right)^2+25\ge25\Rightarrow A\ge\sqrt{25}=5\)

Dấu "=" xảy ra khi : x=1

Vậy GTNN của A là 5 tại x=1

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=8-3a=8-3\cdot7=-13\end{matrix}\right.\)

NV
19 tháng 9 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)

Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ

\(\Rightarrow\) Phương trình đã cho vô nghiệm