K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

sorry vì tớ đang học lớp 5

25 tháng 1 2016

a, x - y > 0

=> x - y + y > 0 + y

=> x > y (ĐPCM)

b, x > y

=> x - y > y - y

=> x - y > 0 (ĐPCM)

28 tháng 12 2020

a.

- Áp dụng quy tắc chuyển vế ta có:

\(x-y>0\)

\(\Leftrightarrow x>0+y\)

\(\Leftrightarrow x>y\) (đpcm)

b.

- Áp dụng quy tắc chuyển vế, ta có:

\(x>y\)

\(\Leftrightarrow x-y>0\) (đpcm)

28 tháng 12 2020

p/s: theo mình mấy cái này chuyển vế là ra mà cần j cm đâu :v mà thoi làm như n cho dễ

a) Nếu x - y > 0 <=> x - y + y > 0 + y <=> x > y

b) Nếu x > y <=> x - y > y - y <=> x - y > 0

19 tháng 1 2018

a) Ta có:

x - y > 0

\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )

\(\Rightarrow\)x > y ( đpcm )

b tương tự nha

12 tháng 1 2016

a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y

b, tương tự thôi (giống như phần a)

tick nha Ngọc ! (>^_^<)

24 tháng 5 2018

Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:

x – y > 0

x > 0 + y

hay x > y (điều phải chứng minh)

13 tháng 12 2019

Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:

x > y

x > y + 0

x – y > 0 (điều phải chứng minh)

9 tháng 8 2017

\(x^3+y^3+z^3\)

\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)

Mà x + y + z chia hết cho 6

\(\Rightarrow x^3+y^3+z^3⋮6\)

k mik nha!

9 tháng 8 2017

Xét hiệu :

\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)

\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)

\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)

\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp 

Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)

Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)