Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=-\dfrac{1}{3}\cdot3\cdot x\cdot x^3\cdot y\cdot z^2=-x^4yz^2\)
2: \(A=-1^4\cdot\left(-1\right)\cdot2^2=4\)
ta có \(AD//BC\) (gt) (1)
và AD=BC (2)
từ 1 và 2 \(\Rightarrow\)ADCB là hình bình hành
xét tg ADC và CBA có
AD=BC(cmt)
AB=DC(tc hbh)
AC chung
\(\Rightarrow\)tgADC = tg CBA (c-c-c)
b) ta có góc BAD = góc BCD ( tc hbh )
c) ta có \(AB//DC\)(tc hbh )
nếu thấy đúng k cho mik nhé
ko hiểu chỗ nào thì hỏi nha ^^
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: Xét ΔEAD có
EB là đường cao
EB là đường trung tuyếm
Do đó: ΔEAD cân tại E
b:
Lời giải:
$BC\parallel AD$ nên $\widehat{C}+\widehat{D}=180^0$ (hai góc trong cùng phía)
$\Rightarrow \widehat{D}=180^0-\widehat{C}=180^0-73^0=107^0$
Vì $AB\parallel CD$ nên $\widehat{B}+\widehat{C}=180^0$ (trong cùng phía)
$\Rightarrow \widehat{B}=180^0-\widehat{C}=180^0-73^0=107^0$
$\widehat{A}+\widehat{D}=180^0$ (trong cùng phía)
$\Rightarrow \widehat{A}=180^0-\widehat{D}=180^0-107^0=73^0$
Bài 3: Không có ký hiệu góc. Bạn cần bổ sung thêm
Bài 4:
Vì $AB\parallel CD$ nên:
$\widehat{ACD}+\widehat{BAC}=180^0$ (hai góc trong cùng phía)
$\widehat{ACD}=180^0-\widehat{BAC}=180^0-40^0=140^0$
b.
$AB\parallel CD$ nên:
$\widehat{ACH}=\widehat{CAB}=40^0$ (so le trong)
$CD\parallel EG$ nên:
$\widehat{HCE}=\widehat{CEG}=50^0$ (so le trong)
$\Rightarrow \widehat{ACH}+\widehat{HCE}=40^0+50^0$
Hay $\widehat{ACE}=90^0$