Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hộ mình đi mình đang cần gấp ai giải cho mình sớm nhất mà lập luận chặt chẽ thì mình k cho
Bài 1 :
Ta có : \(a+b+c=2\) nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)
\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)=\left(b+c\right)\left(a+c\right)\)
Áp dụng BĐT Cô - si cho 2 số không âm :
\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\) ( vì a , b , c thực dương )
\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\left(cmt\right)\)
\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\) ( nhân 2 vế cho ab thực dương ) (1)
( Dấu " = " \(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\) )
Tương tự ta cũng có :
\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)
( Dấu " = \(\Leftrightarrow a=c\) ) (3)
Cộng các BĐT (1) ; (2) ; (3) ta được :
\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)
\(\le\frac{1}{2}\left(a+b+c\right)=1\)
Vậy \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\le1\)
Dấu " = " \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Bài 2 :
a ) Ta có :
\(\widehat{AOB}=180^0-\widehat{OAB}=180^0-\widehat{\frac{BAC}{2}}-\widehat{\frac{ABC}{2}}=90^0+\frac{\left(180^0-\widehat{BAC}-\widehat{ABC}\right)}{2}=90^0+\widehat{\frac{ACB}{2}}\)
b ) Dễ thấy A , M , O , E cùng thuộc đường tròn đường kính OA ( vì \(\widehat{AMO}=\widehat{AEO}=90^0\) ) (1)
Ta có : \(\widehat{AOK}=180^0-\widehat{AOB}=180^0-\left(90^0+\frac{\widehat{ABC}}{2}\right)=90^0-\frac{\widehat{ACB}}{2}=\widehat{CEN}\) ( do \(\Delta CEN\) cân tại C )
=> Tứ giác AOKE nội tiếp hay A , O , K , E cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra 5 điểm A, M, K, O, E cùng thuộc một đường tròn ( đpcm )
Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)
\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh