K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

thế hồn bay mất lun ha !!!

9 tháng 7 2016

Giải hộ mình đi mình đang cần gấp ai giải cho mình sớm nhất mà lập luận chặt chẽ thì mình k cho

8 tháng 3 2020

Bài 1 :

Ta có : \(a+b+c=2\) nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm :

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\) ( vì a , b , c thực dương )

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\left(cmt\right)\)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\) ( nhân 2 vế cho ab thực dương ) (1)

( Dấu " = " \(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\) )

Tương tự ta cũng có :

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)

( Dấu " = \(\Leftrightarrow a=c\) ) (3)

Cộng các BĐT (1) ; (2) ; (3) ta được :

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\le1\)

Dấu " = " \(\Leftrightarrow a=b=c=\frac{2}{3}\)

8 tháng 3 2020

Bài 2 :

Hỏi đáp Toán

a ) Ta có :

\(\widehat{AOB}=180^0-\widehat{OAB}=180^0-\widehat{\frac{BAC}{2}}-\widehat{\frac{ABC}{2}}=90^0+\frac{\left(180^0-\widehat{BAC}-\widehat{ABC}\right)}{2}=90^0+\widehat{\frac{ACB}{2}}\)

b ) Dễ thấy A , M , O , E cùng thuộc đường tròn đường kính OA ( vì \(\widehat{AMO}=\widehat{AEO}=90^0\) ) (1)
Ta có : \(\widehat{AOK}=180^0-\widehat{AOB}=180^0-\left(90^0+\frac{\widehat{ABC}}{2}\right)=90^0-\frac{\widehat{ACB}}{2}=\widehat{CEN}\) ( do \(\Delta CEN\) cân tại C )
=> Tứ giác AOKE nội tiếp hay A , O , K , E cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra 5 điểm A, M, K, O, E cùng thuộc một đường tròn ( đpcm )

Hỏi đáp Toán

11 tháng 9 2016

Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)

\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh