Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{3}{2}-\dfrac{5}{6}:\dfrac{1}{4}+\sqrt{\dfrac{1}{4}-\dfrac{1}{2}}=\dfrac{3}{2}-\dfrac{10}{3}+\sqrt{\dfrac{1}{2}}=-\dfrac{11}{6}+\dfrac{\sqrt{2}}{2}=\dfrac{-33+3\sqrt{2}}{6}\)
\(b,=-\dfrac{4}{3}\cdot\dfrac{9}{2}+\dfrac{13}{12}\cdot\left(-\dfrac{8}{13}\right)=6-\dfrac{2}{3}=\dfrac{16}{3}\\ c,=\dfrac{1}{4}-\left(-\dfrac{1}{6}:4-8\cdot\dfrac{1}{16}\right)=\dfrac{1}{4}-\left(-\dfrac{1}{24}-\dfrac{1}{2}\right)\\ =\dfrac{1}{4}-\dfrac{13}{24}=-\dfrac{7}{24}\\ d,=\dfrac{3^{11}\cdot5^{11}\cdot5^7\cdot3^4}{5^{18}\cdot3^{18}}=\dfrac{1}{3^3}=\dfrac{1}{27}\)
e) ta có : \(E=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{1}=1\)
g) ta có : \(G=13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}=13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}\)
\(=13+30\sqrt{3+2\sqrt{2}}=13+30\sqrt{\left(\sqrt{2}+1\right)^2}=42+30\sqrt{2}\)
h) ta có : \(H=1+\sqrt{3+\sqrt{13+4\sqrt{3}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(=1+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{1-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=1+\sqrt{4+2\sqrt{3}}+\sqrt{1-\sqrt{4-2\sqrt{3}}}=1+\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{1-\left(\sqrt{3}-1\right)^2}\)
\(=1+\sqrt{3}+1+\sqrt{2-\sqrt{3}}=2+\sqrt{3}+\dfrac{\sqrt{4-2\sqrt{3}}}{2}\)
\(=2+\sqrt{3}+\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=2+\sqrt{3}+\dfrac{\sqrt{3}-1}{2}=\dfrac{3}{2}+\dfrac{3\sqrt{3}}{2}\)
cái câu mà bạn bảo kéo dài căn đến hết phải zầy o bn
\(\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{...\sqrt{3}}}}}}\) nếu đúng thì bài này chỉ chứng mk giá trị của nó nhỏ hơn 3 mà thôi . bn xem lại đề nha
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{1}{18}\)
\(b,2^8:2^5+3^3.2-12\)
\(=2^3+9.2-12\)
\(=8+18-12\)
\(=26-12\)
\(=14\)
Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!
Sửa lại câu b
\(=2^3+27.2-12\)
\(=8+54-12\)
\(=62-12\)
\(=50\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=-1+1-\dfrac{1}{3}\)
\(=0-\dfrac{1}{3}\)
\(=\dfrac{-1}{3}\)
------------------------------------------
\(14.\dfrac{3}{2}+\dfrac{6}{5}:\left(-\dfrac{2}{5}\right)\)
\(=14.\dfrac{3}{2}+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\left(-3\right)\)
\(=18\)
------------------------------------------------
\(\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\left(\dfrac{1}{3}\right)^2}\)
\(=\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{3}{12}+\dfrac{8}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{11}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{99}{108}-\dfrac{12}{108}}\)
\(=\sqrt{\dfrac{29}{36}}\)
\(=\dfrac{\sqrt{29}}{6}\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\dfrac{5}{4}+\dfrac{5}{13}-\dfrac{1}{4}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{5}{4}-\dfrac{1}{4}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=1+\left(-1\right)-\dfrac{1}{3}=0-\dfrac{1}{3}=-\dfrac{1}{3}\)
b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)
\(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)
______________________________________________
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)
Từ (1) suy ra:
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)
\(\sqrt{10^2-6^2}-\sqrt{13^2-12^2}+\sqrt{13^2}-\sqrt{12^2}\)
\(=\sqrt{100-36}-\sqrt{169-144}+\sqrt{13^2}-\sqrt{12^2}\)
\(=\sqrt{64}-\sqrt{25}+\sqrt{13^2}-\sqrt{12^2}\)
\(=\sqrt{8^2}-\sqrt{5^2}+\sqrt{13^2}-\sqrt{12^2}\)
\(=8-5+13-12=4\)