K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A\left(x\right)=2x^2-x^3+x-3\)

\(B\left(x\right)=x^3-x^2+3-3x\)

a, Ta có : \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x-3+x^3-x^2+3-3x\)

\(=x^2-2x\)

b, Đề khs hiểu thế, đã là 1 đa thức thì luôn đặt đa thức ''='' 0 thôi :v 

Đặt \(P\left(x\right)=x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy đa thức có nghiệm là 0;2 

c, \(Q\left(x\right)=5x^2+a^2+ax\)

Ta có : \(Q\left(-1\right)=5\left(-1\right)^2+a^2+a\left(-1\right)=0\)

\(\Leftrightarrow5+a^2-a=0\)(cùy, ko nốt đc)

Suy ra : Vô nghiệm Vậy đa thức ko có nghiệm.

Đề hình thiếu rồi bn :)) 

Làm đại thôi, chán hình rồi )): nghề của con.

Câu 1 : 

\(A\left(x\right)=3x^3+2x+3x^2-6\)

\(B\left(x\right)=2x^2-3x^3-7x+6\)

a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)

\(B\left(x\right)=-3x^3+2x^2-7x+6\)

b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)

\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)

\(=5x^2-5x\)

\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)

\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)

\(=6x^3+x^2+9x-12\)

c, Đặt \(5x^2-5x=0\)

\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy rút ra đc ...tự lm bn nhé!...

Câu 2 : 

a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)

Vậy nghiệm đa thức trên la -9/4

b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)

Vậy nghiệm đa thức là 0;-4/3 

22 tháng 6 2020

ơ, bạn ko biết làm hình à

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)

b) Ta có: ΔBAD=ΔBHD(cmt)

nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DH(cmt)

nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)

c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(Hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(cmt)

và AE=HC(cmt)

nên BE=BC(đpcm)

d) Ta có: ΔADE=ΔHDC(cmt)

nên DE=DC(Hai cạnh tương ứng)

Ta có: BE=BC(cmt)

nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DE=DC(cmt)

nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của EC

hay BD\(\perp\)EC(đpcm)

e) Ta có: DA=DH(cmt)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC(đpcm)

11 tháng 7 2015

Nhiều quá, chắc không làm nổi

19 tháng 7 2015

làm xong có lẹ mk thành thần đất sét mất rồi

13 tháng 4 2021

Câu b bạn nhầm đề khôngundefined ạ?

a) Xét ΔHBA vuông tại A và ΔHBD vuông tại D có 

BH chung

BA=BD(gt)

Do đó: ΔHBA=ΔHBD(cạnh huyền-cạnh góc vuông)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
15 tháng 12 2019

1) Hình : Tự vẽ

a) Ta có : AM = MD (gt)

                HM = MC (gt)

    Nên : ACDH là hình bình hành

          => AH = CD (đpcm)

b) Cho HD cắt AB tại E

    Do : ACDH là hình bình hành (cmt)

    Nên : AC // HD (=) AC // ED

    Mà : \(\widehat{EAC}=90^o\)

         => \(\widehat{AED}=180^o-\widehat{EAC}=180^o-90^o=90^o\)

    Do đó : DH \(\perp\)AB (đpcm)

c) Ta có : \(\widehat{EHA}=\widehat{CDE}\)(đồng vị)

    Xét \(\Delta EAH\)và \(\Delta CHD\), ta có :

          \(\widehat{AEH}=\widehat{HCD}=90^o\)

          \(\widehat{EHA}=\widehat{CDH}\)(cmt)

   Nên : \(\Delta EAH\)đồng dạng với \(\Delta CHD\)(g - g)

        => \(\widehat{BAH}=\widehat{DHC}\)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A