K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

đem p chia cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2

+) nếu p chia cho 3 dư 0 \(\Rightarrow p⋮3\)  mà p là số nguyên tố  \(\Rightarrow p=3\)  

khi đó  \(p+10=3+10=13\)  ( thỏa mãn )

            \(p+14=3+14=17\)  ( thỏa mãn )

+ ) nếu p chia cho 3 dư 1  \(\Rightarrow p=3k+1\)   ( k \(\in\) N* )

khi đó \(p+15=3k+1+14=3k+15=3\left(k+3\right)⋮3\)

mà \(p+14>3\Rightarrow p+14\)  là hợp số ( loại )

+) nếu p chia cho 3 dư 2  \(\Rightarrow p=3k+2\)   ( k  \(\in\)  N* )

khi đó \(p+10=3k+2+10=3k+12=3\left(k+4\right)⋮3\)

mà  \(p+10>3\Rightarrow p+10\)  là hợp số ( loại )

vậy p = 3

chúc bạn học giỏi ^^

12 tháng 5 2017

- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại

- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)

Nếu p>3 , p nguyên tố => p  có dạng 3k+1 hoặc 3k+2 (k nguyen dương)

- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại

- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại

=>  với mọi p>3 đều không thỏa mãn 

Vậy  p=3 là giá trị thỏa mãn cần tìm 

12 tháng 5 2017

Số nguyên p là 3

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

2 tháng 12 2017

a là số nguyên tố

Với a=3 ta có: a+2=3+2=5, a+10=3+10=13, a+14=3+14=17 là các số nguyên tố (TM).

Với a\(\ne\)3, a có dạng 3k+1 và 3k+2 (k lớn hơn 1)

Th1: a=3k+1\(\Rightarrow\)a+2=3k+1+2=3k+3\(⋮\)3 (loại)

Th 2:a=3k+2\(\Rightarrow\)a+10=3k+2+10=3k+12\(⋮\)3 (loại)

Vậy .......................

30 tháng 12 2017

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

29 tháng 4 2018

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

23 tháng 9 2018

a) Xét:

\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)

+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so 

Vay p=2

b) Xét:'

\(+p=2\Rightarrow p+8=10\left(ktm\right)\)

\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)

\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)

\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)

\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)

Vay p=3
 

23 tháng 9 2018

a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.

Xét p = 2 => 3.2 + 5 = 11 (nhận)

b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.

=> p = 3 

26 tháng 12 2017

mk biet cau tra loi rui

26 tháng 12 2017

bạn giúp mình với

26 tháng 12 2016

a) xét các số nguyên tố p như sau:

+) xét p=2 => p++2=4 ( là hợp số, loại)

+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)

+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)

- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3 

                    => p+2 là hợp số( trái với đề, loại)

- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.

                    => p+4 là hợp ( trái với đề, loại)

vậy p=3.

b) ta xét các số nguyên tố p như sau:

+) xét p=2 =>p+14=16 ( là hợp số, loại)

+) xét p=3=> p+1=4 ( loại)

vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố) 

=> không tìm được số nguyên tố thỏa mãn.

vậy không tìm được số nguyên tố thỏa mãn.

k cho mình nha!

26 tháng 12 2016

a) P=3=> p+2=5; p+4=7 

=> p =3  nhận

b) P=16