Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
=>(x+y)^2>=4xy
=>(x-y)^2>=0(luôn đúng)
2: \(\Leftrightarrow a^3+b^3-a^2b-ab^2>=0\)
=>a^2(a-b)-b^2(a-b)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
Trả lời:
a/ \(a+b=a-\left(-b\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)\)
b/ \(5-2a=\left(\sqrt{5}\right)^2-\left(\sqrt{2a}\right)^2=\left(\sqrt{5}-\sqrt{2a}\right).\left(\sqrt{5}+\sqrt{2a}\right)\)
c/ \(a-6\sqrt{a}=\left(\sqrt{a}\right)^2-6\sqrt{a}=\sqrt{a}.\left(\sqrt{a}-6\right)\)
d/ \(\left(\sqrt{a}\right)^3-3a+3\sqrt{a}-1=\left(\sqrt{a}\right)^3-3\left(\sqrt{a}\right)^2+3\sqrt{a}-1=\left(\sqrt{a}-1\right)^3\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)
b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)
\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)
\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)
\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)
\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
Thế này có đúng ko nhỉ \(a+b=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3\) sau đó dùng hằng đẳng thức x3 + y3
b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )
c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )