Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tuổi của Minh là x
=>Tuổi của Ninh là x+2
Tuổi của Lan là 1/2x
Theo đề, ta co: 1/2x+x+2+x=27
=>2,5x=25
=>x=10
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)
Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)
\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)
Vậy \(x=2\)
\(2,ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)
\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)
Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)
Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy ...
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)
\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)
b.
$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$
Khi đó:
$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$
c.
$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$
$\Rightarrow 2(x-1)=3\sqrt{x}$
$\Leftrightarrow 2x-3\sqrt{x}-2=0$
$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$
$\Rightarrow x=4$ (tm)
a: góc APH=góc APK=90 độ
gó AEH=90 độ
=>góc APH=góc AEH=90 độ
=>APFE nội tiếp
b: góc AFH=góc AEH=90 độ
=>AFHE nội tiếp
=>A,P,F,E,H cùng thuộc 1 đường tròn
=>góc PFx=góc PEH
góc PEB=góc PEx+góc xFB=90 độ+góc PEx
góc PEC=góc PEH+góc HEC=góc PEH+90 độ
=>góc PEB=góc PEC
Xét ΔPBF và ΔPCE có
góc PBF=góc PCE
góc PFB=góc PEC
=>ΔPBF đồng dạng với ΔPCE
=>PB/PC=PF/PE
=>PB*PE=PC*PF
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2