K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

\(P=\left(sin^2x-1\right)tan^2x+\left(cos^2x-1\right)cot^2x\)

\(=-cos^2x.\dfrac{sin^2x}{cos^2x}+\left(-sin^2x\right)\dfrac{cos^2x}{sin^2x}\)

\(=-sin^2x-cos^2x\)

\(=-\left(sin^2x+cos^2x\right)\)

\(=-1\)

22:

a:

\(\overrightarrow{AD}=2\overrightarrow{DB}\)

=>\(\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\)

\(\overrightarrow{CE}=3\overrightarrow{EA}\)

=>\(\overrightarrow{AE}=\dfrac{1}{3}\overrightarrow{EC}\)

=>\(\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Xét ΔAED có AM là trung tuyến

nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

b: \(\overrightarrow{MI}=\overrightarrow{ME}+\overrightarrow{EI}\)

\(=\dfrac{1}{2}\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CI}\)

\(=\dfrac{1}{2}\left(\overrightarrow{DA}+\overrightarrow{AE}\right)+\dfrac{3}{4}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)+\dfrac{3}{4}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{AB}\)

\(=\dfrac{-1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}+\dfrac{3}{4}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AB}\)

\(=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

18 tháng 8 2023

giúp em câu 20 luôn được không ạ:))

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Câu 22:

TXĐ: $(-\infty;0]\cup [2;+\infty)$

BPT \(\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-2x\leq (x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x\geq \frac{-1}{4}\end{matrix}\right.\Leftrightarrow x\geq \frac{-1}{4}\)

Kết hợp ĐKXĐ suy ra BPT có nghiệm $[\frac{-1}{4};0]\cup [2;+\infty)$

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Câu 23:

Theo công thức trung tuyến:

$CM^2=\frac{BC^2+AC^2}{2}-\frac{AB^2}{4}=\frac{23}{2}$

Áp dụng công thức Herong cho tam giác $ABC$:

$S_{ABC}=\sqrt{\frac{9}{2}(\frac{9}{2}-2)(\frac{9}{2}-3)(\frac{9}{2}-4)}=\frac{3\sqrt{15}}{4}$

$S_{BCM}=\frac{1}{2}S_{ABC}=\frac{3\sqrt{15}}{8}$ 

Áp dụng công thức: $S=\frac{abc}{4R}$ cho tam giác $BCM$ thì bán kính đường tròn ngoại tiếp tam giác là:

$R=\frac{BC.CM.BM}{4S_{BCM}}=\frac{4.\sqrt{\frac{23}{2}}.1}{\frac{3\sqrt{15}}{2}}=\frac{4\sqrt{690}}{45}$

22 tháng 11 2021

Bạn cần giúp bài nào nhỉ?

14 tháng 3 2022

undefined

14 tháng 3 2022

Mình cảm ơn nhiều lắm

23D

24A

25C

26C

27D

29D

29C

30B

31B