K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

A B C D O F E

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: \(\frac{OF}{OB}=\frac{AO}{OC}\)

Tương tự ta có: \(\frac{OE}{OA}=\frac{OB}{OD}\) mà AB // CD nên \(\frac{OB}{OA}=\frac{OA}{OC}\)

Từ đó suy ra \(\frac{OE}{OA}=\frac{OF}{OB}\Rightarrow\) EF // AB.

b) Do AB // EF nên \(\frac{EF}{AB}=\frac{OF}{OB}=\frac{OA}{OC}=\frac{AB}{CD}\Rightarrow\frac{EF}{AB}=\frac{AB}{CD}\Rightarrow AB^2=EF.CD\)

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên \(\frac{S_{OAB}}{S_{OBC}}=\frac{OA}{OC}\Rightarrow\frac{S_1}{S_4}=\frac{OA}{OC}\)

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên \(\frac{S_{OAD}}{S_{ODC}}=\frac{OA}{OC}\Rightarrow\frac{S_3}{S_2}=\frac{OA}{OC}\)

Vậy thì \(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\left(đpcm\right)\)

ABCDOFE

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: OFOB =AOOC 

Tương tự ta có: OEOA =OBOD  mà AB // CD nên OBOA =OAOC 

Từ đó suy ra OEOA =OFOB ⇒ EF // AB.

b) Do AB // EF nên EFAB =OFOB =OAOC =ABCD ⇒EFAB =ABCD ⇒AB2=EF.CD

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên SOABSOBC =OAOC ⇒S1S4 =OAOC 

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên SOADSODC =OAOC ⇒S3S2 =OAOC 

Vậy thì S1S4 =S3S2 ⇒S1.S2=S3.S4(đpcm)

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link sau nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đây nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

13 tháng 9 2018

Bạn kham khảo bài của cô Hoàng Thị Thu Huyền tại link:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đây nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

11 tháng 11 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath.

Chúc bạn học tốt!

10 tháng 11 2019

Trong câu b mình đánh bị nhầm mà là: AB^2=EF.CD

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD