K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

         x2-4x+3=0

   \(\Leftrightarrow\)x(2-4)=-3

\(\Leftrightarrow\)-2x =-3

\(\Leftrightarrow\)x=-3:(-2)

\(\Leftrightarrow\)x=1,5

5 tháng 8 2021

PT có 2 nghiệm `<=> \Delta' >=0`

`<=> 4(2m+3)^2 -4(4m^2-3) >=0`

`<=>16m^2+48m+36-16m^2+12>=0`

`<=>m >= -1`

Viet: `{(x_1+x_2=-2m-3),(x_1x_2=4m^2-3):}`

Theo đề: `x_1^2+x_2^2=1/2`

`<=>(x_1+x_2)^2-2x_1x_2=1/2`

`<=>(-2m-3)^2 -2(4m^2-3)=1/2`

`<=>-4m^2+12m+15=1/2`

`<=>` \(\left[{}\begin{matrix}m=\dfrac{6+\sqrt{94}}{4}\left(TM\right)\\m=\dfrac{6-\sqrt{94}}{4}\left(L\right)\end{matrix}\right.\)

Vậy....

28 tháng 2 2021

`2x+5y=11(1)`

`2x-3y=0(2)`

Lấy (1) trừ (2)

`=>8y=11`

`<=>y=11/8`

`<=>x=(3y)/2=33/16`

a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

10 tháng 5 2021

\(pt:3x^2-4x+m+5=0\\ \Delta'=2^2-3\left(m+5\right)=4-3m-15=-3m-11\)

pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow-3m-11>0\Leftrightarrow m< \dfrac{-11}{3}\)

Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{\dfrac{4}{3}}{\dfrac{m+5}{3}}=-\dfrac{4}{7}\Leftrightarrow\dfrac{4}{3}=\dfrac{-4m-20}{21}\Rightarrow m=-12\left(N\right)\)

NV
10 tháng 5 2021

\(\Delta'=4-3\left(m+5\right)=-3m-11\)

Phương trình có 2 nghiệm pb khi \(\Delta'>0\Leftrightarrow-3m-11>0\Rightarrow m< -\dfrac{11}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-5\)

Khi đó:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=-\dfrac{4}{7}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=-\dfrac{4}{7}\)

\(\Rightarrow7\left(x_1+x_2\right)=-4x_1x_2\)

\(\Leftrightarrow7.\dfrac{4}{3}=-4\left(\dfrac{m+5}{3}\right)\)

\(\Rightarrow m=-12\) (t/m)

Δ=(2m-6)^2-4(m^2+3)

=4m^2-24m+36-4m^2-12=-24m+24

Để phương trình có hai nghiệm phân biệt thì -24m+24>0

=>m<1

x1^2+x2^2=36

=>(x1+x2)^2-2x1x2=36

=>(2m-6)^2-2(m^2+3)=36

=>4m^2-24m+36-2m^2-6-36=0

=>2m^2-24m-6=0

=>m^2-12m-3=0

=>\(m=6-\sqrt{39}\)

a: x^2-mx+m-1=0

Khi m=5 thì (1) sẽ là x^2-5x+4=0

=>x=1 hoặc x=4

b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2

Để phươg trình có 2 nghiệm phân biệt thì m-2<>0

=>m<>2

x2=2x1

x2+x1=m

=>3x1=m và x2=2x1

=>x1=m/3 và x2=2/3m

x1*x2=m-1

=>2/9m^2-m+1=0

=>2m^2-9m+9=0

=>2m^2-3m-6m+9=0

=>(2m-3)(m-3)=0

=>m=3 hoặc m=3/2

10 tháng 6 2016

ĐK:\(x\ge2\)

\(\sqrt{x-2}\times\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\sqrt{x-2}=0\)hoặc\(x^2-4x+3=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\left(loai\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}\left(tm\right)}\)

14 tháng 1 2019

- Điều kiện: x ≠ ±3

- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.

- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3

x1 có thỏa mãn điều kiện nói trên

x2 không thỏa mãn điều kiện nói trên

Vậy nghiệm của phương trình đã cho là: x = 1