Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(17x^2+10y^2-14xy+8x-24y+20=\)\(16+\left(8x-24y\right)+\left(x^2-6xy+9y^2\right)+\left(16x^2-8xy+y^2\right)+20-16=\)
\(4^2+8\left(x-3y\right)+\left(x-3y\right)^2+\left(4x-y\right)^2+4\)\(=\left(4+x-3y\right)^2+\left(4x-y\right)+4>0\)(luôn đúng)
\(5x^2+2y^2+6xy-8x-4y+4=0\)
\(\Leftrightarrow4x^2+x^2+y^2+y^2+2xy+4xy-8x-4y+4=0\)
\(\Leftrightarrow\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left[\left(2x\right)^2+4xy+y^2-4\left(2x+y\right)+2^2\right]+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left[\left(2x+y\right)^2-2\cdot\left(2x+y\right)\cdot2+2^2\right]+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\forall x,y\\\left(x+y\right)^2\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2\ge0\forall x,y\)
Mặt khác: \(\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+y-2=0\\x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(-y\right)+y-2=0\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y+y-2=0\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=2\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
Thay x,y vào P ta có:
\(P=2^{2023}+\left(-2\right)^{2023}=2^{2023}-2^{2023}=0\)
Vậy: ...
\(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)
\(=\frac{a}{x+1}+\frac{b}{x+1^2}+\frac{c}{x+2}\)
\(=\frac{1}{\left(x+1\right)^2\left(x+2\right)=}=\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{x+2}+\frac{c}{\left(x+1\right)^2\left(x+2\right)}\)
\(\frac{c}{\left(x+1\right)^2}+\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{\left(x+2\right)}=1\)
\(=\frac{c}{x^2+2c+x+1}+\frac{a}{x^2+3a\left(x+2a\right)}+\frac{b}{x+2b}=1\)
\(=\frac{\left(c+a\right)}{x^2+\left(2+x+1+\frac{a}{x^2+3ax+2a}+\frac{b}{x+2b}\right)=1}\)
\(=\frac{c+a}{x^2+\left(2c+3a+b\right)}x+2a+2b=0\)
\(\frac{c+a=0}{2c+3b=0}2a+2b=0\)
\(c=b=-a\)
Vậy:.....
Bài 3:
( x+3)(x2-3x+9)-x(x2-3)=18
=> x3-3x2+9x+3x2-9x+27-x3+3x=18
=> 3x+27=18
=> 3x = 18-27
=> 3x = -9
=> x = -9:3
=> x = -3
Lưu ý: ở chỗ -x(x2-3), dấu trừ không phải của chữ x nên nếu bạn muốn thế số vào thì phải ghi 2 dấu trừ ở chỗ này.
Ta có : (x2 - 1)(x + 2) - (x - 2)(x2 + 4x + 4)
= (x2 - 1)(x + 2) - (x - 2)(x + 2)2
= (x2 - 1)(x + 2) - [(x - 2)(x + 2)](x + 2)
= (x2 - 1)(x + 2) - (x2 - 4)(x + 2)
= (x + 2)(x2 - 1 - x2 + 4)
= (x + 2).3
= 3x + 6
bn chép lại đề các câu nhé
a/ \(=\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x^2-1-x^2+4\right)=3\left(x+2\right)\)
b/ \(=x^3-3x^2+3x-1-x^3+1=-3x\left(x-1\right) \)
bài 2
a/ \(=9+6xy+x^2y^2\)
b/ bn ghi lại đề được không?? có gì đó kì kì ở đề á
c/ \(=\frac{\left(4y-1\right)^2}{16x^2}=\frac{16y^2-8y+1}{16x^2}\)
câu a là hằng đảng thức số 1 đó bn, còn câu c: bình phương của từng cái(tử và mẫu) rồi khai triển ra là được bạn ạ
\(\dfrac{-6xy}{7x^4y^2}\cdot14xy^6=\dfrac{-6}{7}\cdot14\cdot\dfrac{x}{x^3}\cdot\dfrac{y^6}{y}\)
\(=-12\cdot\dfrac{y^5}{x^2}\)
Mình cảm ơn ak🤗