K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2

23 tháng 12 2018

\(Taco:\)

\(\left(x+y\right)\left(y+z\right)=187\Leftrightarrow xy+xz+yy+yz=187\)

\(\left(y+z\right)\left(z+x\right)=154\Leftrightarrow yz+xy+zz+xz=154\)

\(\left(z+x\right)\left(x+y\right)=238\Leftrightarrow xz+zy+xx+xy=238\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)+\left(x+z\right)\left(x+y\right)+\left(y+z\right)\left(z+x\right)=579\)

\(\Leftrightarrow xy+zx+yy+yz+yz+xy+zz+xz+xz+zy+xx+xy=579\)

\(\Leftrightarrow3\left(xz+xy+yz\right)+x^2+y^2+z^2=579\)

\(\left(z+x\right)\left(x+y\right)-\left(x+y\right)\left(y+z\right)=51\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x^2-y^2=51\)

\(\left(z+x\right)\left(x+y\right)-\left(y+z\right)\left(x+z\right)=84\)

\(\Leftrightarrow\left(x+z\right)\left(x-z\right)=84\Leftrightarrow x^2-z^2=84\)

\(\Leftrightarrow y^2-z^2=33\)

đến đây tịt

31 tháng 1 2019

ak tớ bt cách giải rồi cần thì ib ns tớ lm :v

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

19 tháng 4 2019

\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)

Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:

\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)