K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

nhìn số 82 = 92 + 1 mà nghĩ ra p2

21 tháng 5 2019

Ta có :

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

tương tự : \(\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}.\left(y+\frac{9}{z}\right)\); \(\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}.\left(z+\frac{9}{x}\right)\)

\(\Rightarrow\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

3 tháng 5 2019

Gấp lắm giúp mình

3 tháng 5 2019

\(\sqrt{7x}\)hay là \(\sqrt{7x+5}\)

17 tháng 9 2015

Ta có

\(\sqrt{-x^2+2x+2}=\sqrt{-x^2+2x-1+3}=\sqrt{-\left(x-1\right)^2+3}\le\sqrt{3}\)

\(\sqrt{-x^2-6x-8}=\sqrt{-x^2-6x-9+1}=\sqrt{-\left(x+3\right)^2+1}\le1\)

\(\Rightarrow\sqrt{-x^2+2x+2}+\sqrt{-x^2-6x-8}\le1+\sqrt{3}\)

Dấu "=" xảy ra khi x-1=0 và x+3=0 nên x=1  và x=-3(VL). Phương trình vô nghiệm

2 tháng 8 2017

x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)

x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)

Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)

Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0

hay E=0.

Vậy E=0

2 tháng 8 2017

nhân \(-x+\sqrt{x^2+3}\)  vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
                         <=>  \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
                          <=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
       lấy (1) + (2) => 2(x+y) =0 => x+y=0        
   lấy 

4 tháng 7 2016

mới giải đucợ 1 vế nè. xem tạm nhé
đặt cái biểu thức là S đi ^^
ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}.\frac{1}{n\left(n+1\right)} =\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right) .\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\sqrt{n}.\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right).\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 =\(\sqrt{n}.\frac{2}{\sqrt{n}}.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

áp dụng ta được: \(\frac{1}{2\sqrt{1}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{2}}\)

...................................................

\(\frac{1}{2011\sqrt{2010}}< \frac{2}{\sqrt{2010}}-\frac{2}{\sqrt{2011}}\)

=> \(S< 2-\frac{2}{\sqrt{2011}}< \frac{88}{45}\)
còn một vế nữa để mai nhé ^^ giờ mình bận :P hì

4 tháng 7 2016

mình bị ấn sai r :3 \(\frac{1}{3\sqrt{2}}< \frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\)đó nhá.sr nha ^^

8 tháng 1 2019

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\)

Đặt x+y=S

xy=p

 \(\hept{\begin{cases}S=1\\\left(S^2-2P\right)^2-2P^2=1\end{cases}}\)

=> \(\left(1-2P\right)^2-2P^2=1\Leftrightarrow2P^2-4P\Leftrightarrow\orbr{\begin{cases}P=0\\P=2\end{cases}}\)

Với S=1; P=0 , x, y là nghiệm phuowg trình: X^2-X=0\(\Leftrightarrow\orbr{\begin{cases}X=0\\X=1\end{cases}}\)Hệ có nghiệm (0; 1) hoặc (1; 0)

Với S=1; P=2; x, y là nghiệm phương trình: x^2-x+2=0 vô nghiệm vì đen ta bé hơn 0  hoăc (x-1/2)^2+7/4 >0

16 tháng 8 2016

 Gọi dây đi qua M là AB. Kẻ OH vuông góc AB tại H.

Có MB AB2R=10

và OMOHOM≥OH quan hệ đường vuông góc và đường xiên.
vậy OH có giá trị lớn nhất bằng OM, khi đó độ dài dây AB nhỏ nhất = 8dm (liên hệ dây cung và khoảng cách đến tâm)
....... Từ đó suy ra kết quả.

16 tháng 8 2016

a) Dây ngắn nhất đi qua M chính là dây vuông góc với bán kính. 

Sau đó áp dụng đl Pytago là ra.

b) Dây dài nhất đi qua M chính là đường kính.