...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

Bài 12

\(M=-\dfrac{2}{3}xy^2\left(\dfrac{9}{16}x^4y^2\right)=-\dfrac{3}{8}x^5y^4\)

hệ số -3/8 ; biến x^5y^4 

Thay x = 2 ; y = -1 ta được 

\(-\dfrac{3}{8}.2^5=-12\)

 

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

23 tháng 8 2017

mk hổng có nhìn rõ đâu

23 tháng 8 2017

nhìn rõ mà ko biết làm hihi

31 tháng 10 2017
x 10 -2 -3 1 0 1.21 0.25
\(^{x^2}\) 100 4 9 1 0 1.4641

0.0625

1.44 -25 \(\dfrac{4}{9}\)
2.0736 625 \(\dfrac{16}{81}\)

okhehe

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!

20 tháng 10 2017

BT1.

Ta có: \(2009^{20}=2009^{10}\times2009^2\)\(20092009^{10}=2009^{10}\times10001^{10}\)

Rõ ràng \(2009^2< 10001^{10}\\ \Rightarrow2009^{10}\times2009^2< 2009^{10}\times10001^{10}\\ \Rightarrow2009^{20}< 20092009^{10}\left(đpcm\right)\)

BT9. Bn xem lại đề bài đi. \(x^2+x+1\) luôn lớn hơn 0 mà bn.

BT3.

Giả sử \(M\in N\)

Nên:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+x+t}\in N\\\dfrac{z}{z+t+y}\in N\\\dfrac{t}{t+z+x}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+x+t\\z⋮z+t+y\\t⋮t+z+x\end{matrix}\right.\)

\(x,y,z,t\in N\)*\(\Rightarrow x,y,z,t>0\)\(\Rightarrow\left\{{}\begin{matrix}x>x+y+z\\y>x+y+t\\z>y+z+t\\t>x+z+t\end{matrix}\right.\)(vô lí)

Vậy rõ ràng điều giả sử là vô lí. Nên \(M\notin N\left(đpcm\right)\)

Mình chỉ giúp đc đến đây thôi, mong bn thông cảm

Ngoài ra, chúc bn học tốt nhébanhbanhbanhbanhbanh

20 tháng 10 2017

Bài toán 2.

Ta có: \(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+....+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=\dfrac{2009-1}{1}+\dfrac{2009-2}{2}+\dfrac{2009-3}{3}+...+\dfrac{2009-2008}{2008}\)

\(=2009-1+\dfrac{2009}{2}-1+\dfrac{2009}{3}-1+....+\dfrac{2009}{2008}-1\)

\(=2009+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{....1}{2008}\right)-1.2008\)

\(=\left(2009-2008\right)+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=1+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

=\(2009.A\)

Do đó, tỉ số \(\dfrac{A}{B}=\dfrac{A}{2009.A}=\dfrac{1}{2009}\)

30 tháng 5 2017

Cho tam giác đều ABD . Vẽ về phía ngoài tam giác ấy các tam giác vuông cân ở A là ABC và ADE . a , CM CD= BE
b, Câu a có đúng nên tam giác ABD cân ở A hay không ?