K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

b: Xét ΔBAC có 

M là trung điểm của AB

I là trung điểm của AC

Do đó: MI là đường trung bình của ΔBAC

Suy ra: MI//BC và \(MI=\dfrac{BC}{2}\)

mà \(BN=\dfrac{BC}{2}\)

nên MI//BN và MI=BN

hay BMIN là hình bình hành

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//AC

Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

b: Xét tứ giác MCEB có 

N là trung điểm của đường chéo ME

N là trung điểm của đường chéo BC

Do đó: MECB là hình bình hành

Suy ra: MC//BE

a: Xét ΔBAC có 

M là trung điểm của BA

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC

hay AMNC là hình thang

7 tháng 11 2021

a) Ta có: N là trung điểm của AC ; M là trung điểm của AB

        =>MN là đường trung bình của T/Giác ABC

        =>MN=1/2*BC

        =>MN=1/2*6=3cm

b) Ta có:MN là đường trung bình 

        =>MN//BC (định lí đường trung bình)

        => TGiác BMNC là hình thang

c)Ta có :EN = NM

     Mà   NM=3cm

         =>NM+NE=6cm

         =>EM=BC=6cm

    Ta có :EM//CB ( do NM thuộc EM)

              EM=BC=6cm

         =>Tgiac BMEC là HBH ( dấu hiệu nhận biết)

       

7 tháng 11 2021

29 tháng 11 2021

helo duy

29 tháng 11 2021

helo duy

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BCa) Tính độ dài MN? Chứng minh MBNC là hình thang cânb) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hànhc) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhậtd) Chứng minh AMPN là hình thoia. MN = ?Trong ΔABC có:  M là trung điểm AB (gt)  N là trung điểm AC (gt)⇒ MN là đường trung bình ΔABC⇒ MN =...
Đọc tiếp

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC

a) Tính độ dài MN? Chứng minh MBNC là hình thang cân

b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành

c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật

d) Chứng minh AMPN là hình thoi

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

b. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

c. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

d) Chứng minh AMPN là hình thoi

Tính giúp mình câu d nha!!!

0
30 tháng 11 2021

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

b. C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

c. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

d. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

30 tháng 11 2021

a: Xét ΔBAC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)

17 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có: MN//BC

D\(\in\)NM

Do đó; MD//CB

ta có: \(MN=\dfrac{CB}{2}\)

\(MN=\dfrac{MD}{2}\)

Do đó:CB=MD

Xét tứ giác BMDC có

BC//MD

BC=MD

Do đó: BMDC là hình bình hành

b: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

nên AMCD là hình bình hành

17 tháng 12 2023

Anh ơi anh giúp em câu hỏi em mới đăng với nha anh thanks anh nhiều lắm ạ